Advertisements
Advertisements
प्रश्न
Find x and y, if `[(x, 0),(-3, 1)][(1, 1),(0, y)] = [(2, 2),(-3, -2)]`
उत्तर
`[(x, 0),(-3, 1)][(1, 1),(0, y)] = [(2, 2),(-3, -2)]`
`[(x xx 1 + 0 xx 0, x xx 1 + 0 xx y),(-3 xx 1 + 1 xx 0, -3 xx 1 + 1 xx y)] = [(2, 2),(-3, -2)]`
`[(x + 0, x + 0),(-3 + 0, -3 + y)] = [(2, 2),(-3, -2)]`
`[(x, x),(-3, -3 + y)] = [(2, 2),(-3, -2)]`
Comparing the corresponding elements, we get
x = 2
–3 + y = –2 `=>` y = –2 + 3 = 1
APPEARS IN
संबंधित प्रश्न
if `A = [(3,5),(4,-2)] and B = [(2),(4)]`is the product AB possible? Give a reason. If yes, find AB
Solve for x and y: `[(x + y, x - 4)][(-1, -2),(2, 2)] = [-7, -11]`
If `P = [(2,6),(3,9)]` and `Q = [(3,x),(y, 2)]` find x and y such that PQ = null matrix
Given `[(2, 1),(-3, 4)] "X" = [(7),(6)]`.
the order of the matrix X.
Given A = `[(1 , 1),(8 , 3)]` evaluate A2 - 4A.
If P = `[(4, 6),(2 ,- 8)], "Q" = [(2, -3),(-1, 1)]` Find 2PQ
Given martices A = `[(2, 1),(4, 2)] and "B" = [(3, 4),(-1, -2)], "C" = [(-3, 1),(0, -2)]` Find the products of (i) ABC (ii) ACB and state whether they are equal.
If A = `[(-1, 3),(2, 4)], "B" = [(2, -3),(-4, -6)]` find the matrix AB + BA
A = `[(1, 0),(2, 1)] and "B" = [(2, 3),(-1, 0)]` Find A2 + AB + B2
Find the matrix X of order 2 × 2 which satisfies the equation `[(3, 7),(2, 4)] [(0, 2),(5, 3)] + 2"X" = [(1, -5),(-4, 6)]`