Advertisements
Advertisements
प्रश्न
If A = `[(1, 3),(2, 4)]`, B = `[(1, 2),(4, 3)]` and C = `[(4, 3),(1, 2)]`, find:
- (AB)C
- A(BC)
Is A(BC) = (AB)C?
उत्तर
i (AB)C = `[(1, 3),(2, 4)][(1, 2),(4, 3)] [(4, 3),(1, 2)]`
= `[(1(1) + 3(4), 1(2) + 3(3)),(2(1) + 4(4), 2(2) + 4(3))] = [(4, 3), (1, 2)]`
= `[(13, 11),(18, 16)][(4, 3),(1, 2)]`
= `[(13(4) + 11(1), 13(3) + 11(2)),(18(4) + 16(1), 18(3) + 16(2))]`
= `[(52 + 11, 39 + 22),(72 + 16, 54 + 32)]`
= `[(63, 61),(88, 86)]`
ii A(BC) = `[(1, 3),(2, 4)][(1, 2),(4, 3)][(4, 3),(1, 2)]`
= `[(1, 3),(2, 4)] [(1(4) + 2(1), 1(3) + 2(2)),(4(4) + 3(1), 4(3) + 3(2))]`
= `[(1, 3),(2, 4)][(4 + 2, 3 + 4),(16 + 3, 12 + 6)]`
= `[(1, 3),(2, 4)][(6, 7),(19, 18)]`
= `[(6 + 57, 7 + 54),(12 + 76,14 + 72)]`
= `[(63, 61),(88, 86)]`
∴ A(BC) = (AB)C
APPEARS IN
संबंधित प्रश्न
Given A = `[(4, 1),(2, 3)]` and B = `[(1, 0),(-2, 1)]`, find A2
If A = `[(-1, 1),(a, b)]` and A2 = I, find a and b.
Solve for x and y:
`[(2, 5),(5, 2)][(x),(y)] = [(-7),(14)]`
Solve for x and y: `[(x + y, x - 4)][(-1, -2),(2, 2)] = [-7, -11]`
If M = `[(4,1),(-1,2)]`, show that 6M – M2 = 9I; where I is a 2 × 2 unit matrix.
Given A = `[(1 , 1),(8 , 3)]` evaluate A2 - 4A.
Find the 2 x 2 matrix X which satisfies the equation.
`[(3, 7),(2, 4)][(0 , 2),(5 , 3)] + 2"X" = [(1 , -5),(-4 , 6)]`
If A = `[(1, 2),(3, 4)] and "B" = [(2, 1),(4, 2)], "C" = [(5, 1),(7, 4)]`, compute (B + C)A
If A = `[(1, 4),(0, -1)], "B" = [(2, x),(0, -1/2)]`find the value of x if AB = BA
Given `[(2, 1),(-3, 4)], "X" = [(7),(6)]` the matrix X.