Advertisements
Advertisements
Question
Find x and y, if `[(x, 0),(-3, 1)][(1, 1),(0, y)] = [(2, 2),(-3, -2)]`
Solution
`[(x, 0),(-3, 1)][(1, 1),(0, y)] = [(2, 2),(-3, -2)]`
`[(x xx 1 + 0 xx 0, x xx 1 + 0 xx y),(-3 xx 1 + 1 xx 0, -3 xx 1 + 1 xx y)] = [(2, 2),(-3, -2)]`
`[(x + 0, x + 0),(-3 + 0, -3 + y)] = [(2, 2),(-3, -2)]`
`[(x, x),(-3, -3 + y)] = [(2, 2),(-3, -2)]`
Comparing the corresponding elements, we get
x = 2
–3 + y = –2 `=>` y = –2 + 3 = 1
APPEARS IN
RELATED QUESTIONS
Given A = `[(0, 4, 6),(3, 0, -1)]` and B = `[(0, 1),(-1, 2),(-5, -6)]`, find if possible A2
If A = `[(a, 0),(0, 2)]`, B = `[(0, -b),(1, 0)]`, M = `[(1, -1),(1, 1)]` and BA = M2, find the values of a and b.
Given the matrices:
A = `[(2, 1),(4, 2)]`, B = `[(3, 4),(-1, -2)]` and C = `[(-3, 1),(0, -2)]`. Find:
- ABC
- ACB.
State whether ABC = ACB.
Construct a 2 x 2 matrix whose elements aij are given by
aij = 2i - j
If A = `[(3 , 1),(-1 , 2)]` and B =`[(7),(0)]`, find matrix C if AC = B.
If A = `[(3, 5),(4, -2)] and "B" = [(2),(4)]` , is the product AB possible ? Give a reason. If yes, find AB.
A = `[(1, 2),(3, 4)] and "B" = [(6, 1),(1, 1)], "C" = [(-2, -3),(0, 1)]` find each of the following and state if they are equal.CA + B
Find x and y if `[(-3, 2),(0, -5)] [(x),(2)] = [(5),(y)]`
Choose the correct answer from the given four options :
If A = `[(0, 0),(1, 0)]`, then A2 =
Choose the correct answer from the given four options :
If A = `[(1, 0),(1, 1)]`, then A2 =