Advertisements
Advertisements
प्रश्न
If M = `[(1, 2),(2, 1)]` and I is a unit matrix of the same order as that of M; show that: M2 = 2M + 3I.
उत्तर
M2 = `[(1, 2),(2, 1)][(1, 2),(2, 1)]`
= `[(1 xx 1 + 2 xx 2, 1 xx 2 + 2 xx 1),(2 xx 1 + 1 xx 2, 2 xx 2 + 1 xx 1)]`
= `[(1 + 4, 2 + 2),(2 + 2, 4 + 1)]`
= `[(5, 4),(4, 5)]`
2M + 3I = `2[(1, 2),(2, 1)] + 3[(1, 0),(0, 1)]`
= `[(2, 4),(4, 2)] + [(3, 0),(0, 3)]`
= `[(5, 4),(4, 5)]`
Hence, M2 = 2M + 3I
APPEARS IN
संबंधित प्रश्न
Given A = `[(0, 4, 6),(3, 0, -1)]` and B = `[(0, 1),(-1, 2),(-5, -6)]`, find if possible BA
If A = `[(-1, 1),(a, b)]` and A2 = I, find a and b.
Find the matrix A, If B =`[(2,1),(0,1)] and B^2 = B+1/2A`
If A = `[(3, 5),(4,- 2)]` and B = `[(2),(4)]`, is the product AB possible ? Given a reason. If yes, find AB.
If A = `[(2, 4),(3, 2)]` and B = `[(1, 3),(-2, 5)]`
find AB,
Show that `[(1, 2),(2, 1)]` is a solution of the matrix equation X² – 2X – 3I = 0,Where I is the unit matrix of order 2
If `[(3, 4),(5, 5)] = [(a, b),(c, d)] [(1, 0),(0, 1)]`write down the values of a,b,c and d
Find the value of x given that A2 = B Where A = `[(2, 12),(0, 1)] and "B" = [(4, x),(0, 1)]`
Choose the correct answer from the given four options :
If A = `[(2, -2),(-2, 2)]`, then A2 = pA, then the value of p is
If A = `[(1, 4),(1, 0)], "B" = [(2, 1),(3, -1)] and "C" = [(2, 3),(0, 5)]` compute (AB)C = (CB)A ?