Advertisements
Advertisements
प्रश्न
If A = `[(1, 4),(1, 0)], "B" = [(2, 1),(3, -1)] and "C" = [(2, 3),(0, 5)]` compute (AB)C = (CB)A ?
उत्तर
Given
A = `[(1, 4),(1, 0)]`
B = `[(2, 1),(3, -1)]`
C = `[(2, 3),(0, 5)]`
(AB) C = `[[(1, 4),(1, 0)] xx [(2, 1),(3, -1)]][(2, 3),(0, 5)]`
= `[(2 + 12, 1 - 14),(2 + 0, 1 + 0)][(2, 3),(0, 5)]`
= `[(14, -13),(2, 1)][(2, 3),(0, 5)]`
= `[(28 + 0, 42 - 15),(4 + 0, 6 + 5)]`
= `[(28, 27),(4, 11)]`
(CB) A = `[[(2, 3),(0, 5)][(2, 1),(3, -1)]][(1, 4),(1, 0)]`
= `[(4 + 9, 2 - 3),(0 + 15, 0 - 5)][(1, 4),(1, 0)]`
= `[(13, 1),(15, 5)][(1, 4),(1, 0)]`
= `[(13 - 1, 52 + 0),(15 - 5, 60 + 0)]`
= `[(12, 52),(10, 60)]`
It is clear from above that
(AB) C ≠ )CB) A.
APPEARS IN
संबंधित प्रश्न
Find x and y, if `[(x, 0),(-3, 1)][(1, 1),(0, y)] = [(2, 2),(-3, -2)]`
Solve for x and y: `[(x + y, x - 4)][(-1, -2),(2, 2)] = [-7, -11]`
If M = `[(4,1),(-1,2)]`, show that 6M – M2 = 9I; where I is a 2 × 2 unit matrix.
If `P = [(2,6),(3,9)]` and `Q = [(3,x),(y, 2)]` find x and y such that PQ = null matrix
`[(2sin 30° ,- 2 cos 60°),(- cot 45° , sin 90°)]`
`[(tan 45° , sec 60°),("cosec" 30° , cos 0°)]`
If A = `[(-1, 3),(2, 4)], "B" = [(2, -3),(-4, -6)]` find the matrix AB + BA
If A = `[(1 , -2),(2, -1)] and "B" = [(3, 2),(-2, 1)]` Find 2B – A2
Find x and y if `[(x + y, y),(2x, x - y)] [(2),(-1)] = [(3),(2)]`
If A = `[(2, 3),(1, 2)]` find x and y so that A² – xA + yI
Given `[(2, 1),(-3, 4)], "X" = [(7),(6)]` the matrix X.