Advertisements
Advertisements
प्रश्न
If A = `[(1, 2),(-3, 4)], "B" = [(0, 1),(-2, 5)] and "C" = [(-2, 0),(-1, 1)]` find A(4B – 3C)
उत्तर
A = `[(1, 2),(-3, 4)], "B" = [(0, 1),(-2, 5)] and "C" = [(-2, 0),(-1, 1)]`
4B - 3C = `4[(0, 1),(-2, 5)] - 3[(-2, 0),(-1, 1)]`
= `[(0, 4),(-8, 20)] - [(-6, 0),(-3, 3)]`
= `[(0 - (-6), 4 - 0),(-8 - (-3), 20 - 3)]`
= `[(0 + 6, 4 - 0),(-8 + 3, 20 - 3)]`
= `[(6, 4),(-5, 17)]`
Now A(4B - 3C) = `[(1, 2),(-3, 4)][(6, 4),(-5, 17)]`
= `[(1 xx 6 + 2(-5), 1 xx 4 + 2 xx 17),(-3 xx + 6 + 4 x (-5), -3 xx 4 + 4 xx 17)]`
= `[(6 - 10, 4 + 34),(-18 - 20, -12 + 68)]`
= `[(-4, 38),(-38, 56)]`.
APPEARS IN
संबंधित प्रश्न
Write the additive inverse of matrices A, B and C:
Where `A = [(6, -5)]; B = [(-2, 0),(4, -1)]` and `C = [(-7), (4)]`.
Given A = `[(-3, 6),(0, -9)]` and At is its transpose matrix. Find `A^t - 1/3 A`
Given `A = [(1, 1),(-2, 0)]` and `B = [(2, -1),(1, 1)]`. Solve for matrix X:
3A – 2X = X – 2B
If A = `[(0, 2),(5, -2)]`, B = `[(1, -1),(3, 2)]` and I is a unit matrix of order 2 × 2, find IB
Given `A = [(4, 1),(2, 3)]` and `B = [(1,0),(-2, 1)]` find `A^2 - AB + 2B`
Given
`"A" = [(2 , -6),(2, 0)] "B" = [(-3, 2),(4, 0)], "C" = [(4, 0),(0, 2)]`
Find the martix X such that A + 2X = 2B + C.
Given that M = `[(2, 0),(1, 2)]` and N = `[(2, 0),(-1,2)]`, find M + 2N
If `[(1, 4),(-2, 3)] + 2M = 3[(3, 2),(0, -3)]`, find the matrix M.
If `2[(3, 4),(5, x)] + [(1, y),(0, 1)] = [(7, 0),(10, 5)]` Find the values of x and y
If `[(5, 2),(-1, y + 1)] -2 [(1, 2x - 1),(3, -2)] = [(3, -8),(-7, 2)]` Find the values of x and y