Advertisements
Advertisements
Question
If A = `[(1, 2),(-3, 4)], "B" = [(0, 1),(-2, 5)] and "C" = [(-2, 0),(-1, 1)]` find A(4B – 3C)
Solution
A = `[(1, 2),(-3, 4)], "B" = [(0, 1),(-2, 5)] and "C" = [(-2, 0),(-1, 1)]`
4B - 3C = `4[(0, 1),(-2, 5)] - 3[(-2, 0),(-1, 1)]`
= `[(0, 4),(-8, 20)] - [(-6, 0),(-3, 3)]`
= `[(0 - (-6), 4 - 0),(-8 - (-3), 20 - 3)]`
= `[(0 + 6, 4 - 0),(-8 + 3, 20 - 3)]`
= `[(6, 4),(-5, 17)]`
Now A(4B - 3C) = `[(1, 2),(-3, 4)][(6, 4),(-5, 17)]`
= `[(1 xx 6 + 2(-5), 1 xx 4 + 2 xx 17),(-3 xx + 6 + 4 x (-5), -3 xx 4 + 4 xx 17)]`
= `[(6 - 10, 4 + 34),(-18 - 20, -12 + 68)]`
= `[(-4, 38),(-38, 56)]`.
APPEARS IN
RELATED QUESTIONS
Given `A = [(2, -3)], B = [(0, 2)]` and `C = [(-1, 4)]`; find the matrix X in the following:
A – X = B + C
Given `A = [(-1, 0),(2, -4)]` and `B = [(3, -3),(-2, 0)]`; find the matrix X in the following:
X – B = A
Evaluate:
`6[(3),(-2)] -2[(-8),(1)]`
Find x and y if `3[(4, x)] + 2[(y, -3)] = [(10, 0)]`
If A = `[(0, 2),(5, -2)]`, B =` [(1, -1),(3, 2)]` and I is a unit matrix of order 2 × 2, find AI
If A = `[(2, 1),(0, 0)]`, B = `[(2, 3),(4, 1)]` and C = `[(1, 4),(0, 2)]`; then show that (B – A)C = BC – AC.
If A = `[(1, 4),(2, 1)]`, B = `[(-3, 2),(4, 0)]` and C = `[(1, 0),(0, 2)]`, simplify : A2 + BC.
Solve for x and y:
`[(-2, 0),(3, 1)][(-1),(2x)] + 3[(-2),(1)] = 2[(y),(3)]`
If A = `[(7, 5),(-3, 3)]` and B = `[(-2, 5),(1, 0)]`, then the matrix P (such that A + P = B) is ______.
If I is a unit matrix of order 2 and M + 4I = `[(8, -3),(4, 2)]`, the matrix M is ______.