Advertisements
Advertisements
Question
Evaluate:
`6[(3),(-2)] -2[(-8),(1)]`
Solution
`6[(3),(-2)] - 2[(-8),(1)]`
= `[(18),(-12)] - [(-16),(2)]`
= `[(18 + 16),(-12 - 2)]`
= `[(34),(-14)]`
APPEARS IN
RELATED QUESTIONS
Evaluate:
`2[(-1, 0),(2, -3)] + [(3, 3),(5, 0)]`
Given A = `[(-3, 6),(0, -9)]` and At is its transpose matrix. Find 2At – 3A
If A = `[(2, 1),(0, 0)]`, B = `[(2, 3),(4, 1)]` and C = `[(1, 4),(0, 2)]`; then show that A(B + C) = AB + AC.
If `[(x, y)][(x),(y)] = [25]` and `[(-x, y)][(2x),(y)] = [-2]`; find x and y, if:
- x, y ∈ W (whole numbers)
- x, y ∈ Z (integers)
Let A be a 2 x 2 matrix and let I be an identity matrix of the order 2 x 2. Prove that AI = IA = A.
If A = `[(9 , 1),(7 , 8)]` , B = `[(1 , 5),(7 , 12)]`
find matrix C such that 5A + 5B + 2C is a null matrix.
If `[(a, 3),(4, 2)] + [(2, b),(1, -2)] - [(1, 1),(-2, c)] = [(5, 0),(7, 3)]` Find the value of a,b and c
If A = `[(2, a),(-3, 5)] and "B" = [(-2, 3),(7, b)], "C" = [(c, 9),(-1, -11)]` and 5A + 2B = C, find the values of a,b,c
If A = `[(1, 2),(-3, 4)], "B" = [(0, 1),(-2, 5)] and "C" = [(-2, 0),(-1, 1)]` find A(4B – 3C)
If I is a unit matrix of order 2 and M + 4I = `[(8, -3),(4, 2)]`, the matrix M is ______.