Advertisements
Advertisements
प्रश्न
Given A = `[(-3, 6),(0, -9)]` and At is its transpose matrix. Find 2At – 3A
उत्तर
A = `[(-3, 6),(0, -9)]`
At = `[(-3, 0),(6, -9)]`
2At – 3A = `2[(-3, 0),(6, -9)] - 3[(-3, 6),(0, -9)]`
= `[(-6, 0),(12, -18)] - [(-9, 18),(0, -27)]`
= `[(-6 - (-9), 0 - 18),(12 - 0, -18 - (-27))]`
= `[(-6 + 9, -18),(12, -18 + 27)]`
= `[(3, -18),(12, 9)]`
APPEARS IN
संबंधित प्रश्न
If I is the unit matrix of order 2 × 2; find the matrix M, such that `5M + 3I = 4[(2, -5),(0, -3)]`
Solve for x and y:
`[(-2, 0),(3, 1)][(-1),(2x)] + 3[(-2),(1)] = 2[(y),(3)]`
Find x and y, if `[(3, -2),(-1, 4)][(2x),(1)] + 2[(-4),(5)] = 4[(2),(y)]`
Find x and y, if `[(3x, 8)][(1, 4),(3, 7)] - 3[(2, -7)] = 5[(3, 2y)]`
If `|(2"a" + "b" , "c"),("d" , 3"a" - "b")|` = `|(4 , 3"a"),(7 , 6)|` , find the values of a , b , c and d.
Given A = `[(1, 4),(2, 3)]` and B = `[(-4, -1),(-3, -2)]` find a matrix C such that C + B = `[(0, 0),(0, 0)]`
Solve the matrix equation `[(2, 1),(5, 0)] -3"X" = [(-7, 4),(2, 6)]`
If `[(1, 4),(-2, 3)] + 2M = 3[(3, 2),(0, -3)]`, find the matrix M.
Find X if Y = `[(3, 2),(1, 4)]` and 2X + Y = `[(1, 0),(-3, 2)]`
If A = `[(-3, -7),(0, -8)]` and A – B = `[(6, 4),(-3, 0)]`, then matrix B is ______.