Advertisements
Advertisements
प्रश्न
Given A = `[(3, 0),(0, 4)]`, B = `[(a, b),(0, c)]` and that AB = A + B; find the values of a, b and c.
उत्तर
AB = `[(3, 0),(0, 4)][(a, b),(0, c)]`
= `[(3 xx a + 0 xx 0, 3 xx b + 0 xx c),(0 xx a + 4 xx 0, 0 xx b + 4 xx c)]`
= `[(3a + 0, 3b + 0),(0 + 0, 0 + 4c)]`
= `[(3a, 3b),(0, 4c)]`
A + B = `[(3, 0),(0, 4)] + [(a, b),(0, c)]`
= `[(3 + a, 0 + b),(0 + 0, 4 + c)]`
Given, AB = A + B
`∴ [(3a, 3b),(0, 4c)] = [(3 + a, b),(0, 4 + c)]`
Comparing the corresponding elements, we get,
3a = 3 + a
`=>` 3a – a = 3
`=>` 2a = 3
`=> a = 3/2`
3b = b
`=>` 3b – b = 0
`=>` 2b = 0
`=>` b = 0
4c = 4 + c
`=>` 3c = 4
`=> c = 4/3`
APPEARS IN
संबंधित प्रश्न
Given `A = [(-1, 0),(2, -4)]` and `B = [(3, -3),(-2, 0)]`; find the matrix X in the following:
X – B = A
Evaluate:
`2[(-1, 0),(2, -3)] + [(3, 3),(5, 0)]`
Find x and y if `x[(-1), (2)] - 4[(-2), (y)] = [(7),(-8)]`
If A = `[(0, 2),(5, -2)]`, B =` [(1, -1),(3, 2)]` and I is a unit matrix of order 2 × 2, find AI
If A = `[(2, 1),(0, 0)]`, B = `[(2, 3),(4, 1)]` and C = `[(1, 4),(0, 2)]`; then show that A(B + C) = AB + AC.
If A = `[(2, x),(0, 1)]` and B = `[(4, 36),(0, 1)]`; find the value of x, given that A2 = B.
Given A = `[(1, 4),(2, 3)]` and B = `[(-4, -1),(-3, -2)]` find a matrix C such that C + B = `[(0, 0),(0, 0)]`
If `[(a, 3),(4, 2)] + [(2, b),(1, -2)] - [(1, 1),(-2, c)] = [(5, 0),(7, 3)]` Find the value of a,b and c
If A = `[(5, -5),(3, -3)]` and B = `[(-5, 5),(-3, 3)]`; the value of matrix (A – B) is ______.
If matrix A = `[(x - y, x + y),(y - x, y + x)]` and matrix B = `[(x + y, y - x),(x - y, y + x)]` then A + B is ______.