Advertisements
Advertisements
प्रश्न
Given A = `[(3, 0),(0, 4)]`, B = `[(a, b),(0, c)]` and that AB = A + B; find the values of a, b and c.
उत्तर
AB = `[(3, 0),(0, 4)][(a, b),(0, c)]`
= `[(3 xx a + 0 xx 0, 3 xx b + 0 xx c),(0 xx a + 4 xx 0, 0 xx b + 4 xx c)]`
= `[(3a + 0, 3b + 0),(0 + 0, 0 + 4c)]`
= `[(3a, 3b),(0, 4c)]`
A + B = `[(3, 0),(0, 4)] + [(a, b),(0, c)]`
= `[(3 + a, 0 + b),(0 + 0, 4 + c)]`
Given, AB = A + B
`∴ [(3a, 3b),(0, 4c)] = [(3 + a, b),(0, 4 + c)]`
Comparing the corresponding elements, we get,
3a = 3 + a
`=>` 3a – a = 3
`=>` 2a = 3
`=> a = 3/2`
3b = b
`=>` 3b – b = 0
`=>` 2b = 0
`=>` b = 0
4c = 4 + c
`=>` 3c = 4
`=> c = 4/3`
APPEARS IN
संबंधित प्रश्न
Evaluate:
`2[(-1, 0),(2, -3)] + [(3, 3),(5, 0)]`
If `[(4, -2),(4, 0)] + 3A = [(-2, -2),(1, -3)]`; find A.
Given A = `[(-3, 6),(0, -9)]` and At is its transpose matrix. Find 2At – 3A
If A = `[(2, x),(0, 1)]` and B = `[(4, 36),(0, 1)]`; find the value of x, given that A2 = B.
Find x and y, if `[(3, -2),(-1, 4)][(2x),(1)] + 2[(-4),(5)] = 4[(2),(y)]`
Given A = `[(1, 4),(2, 3)]` and B = `[(-4, -1),(-3, -2)]` find a matrix C such that C + B = `[(0, 0),(0, 0)]`
A = `[(1, 2),(-2, 3)]` and B = `[(-2, -1),(1, 2)], "C" [(0, 3),(2, -1)]`Find A + 2B – 3C
If A = `[(2, a),(-3, 5)] and "B" = [(-2, 3),(7, b)], "C" = [(c, 9),(-1, -11)]` and 5A + 2B = C, find the values of a,b,c
Find the matrix B if A = `[(4, 1),(2, 3)]` and A2 = A + 2B
If `4[(5, x)] - 5[(y, -2)] = [(10, 22)]`, the values of x and y are ______.