Advertisements
Advertisements
प्रश्न
Find the matrix A, if `B = [(2, 1),(0, 1)]` and `B^2 = B + 1/2 A`.
उत्तर
`B^2 = B + 1/2 A`
`1/2 A = B^2 - B`
A = 2(B2 – B)
`B^2 = [(2, 1),(0, 1)][(2, 1),(0, 1)]`
= `[(2 xx 2 + 1 xx 0, 2 xx 1 + 1 xx 1),(0 xx 2 + 1 xx 0, 0 xx 1 + 1 xx 1)]`
= `[(4 + 0, 2 + 1) ,(0 + 0,0 + 1)]`
= `[(4, 3),(0, 1)]`
`B^2 - B = [(4, 3),(0, 1)] -[(2, 1),(0, 1)]`
= `[(4 - 2, 3 - 1),(0 - 0, 1 - 1)]`
= `[(2, 2),(0, 0)]`
∴ A = 2(B2 – B)
= `2[(2, 2),(0, 0)]`
= `[(4, 4),(0, 0)]`
संबंधित प्रश्न
Given `A = [(2,1),(3,0)]`, `B = [(1,1),(5,2)]` and `C = [(-3-1),(0 0)]` Find A + 2C - B
Given `A = [(1 4),(2 3)] and B = [(-4 -1),(-3 -2)]` Find the matrix C such that C + B = `[(0, 0),(0,0)]`
Evaluate if possible `[(3, 2)][(2),(0)]`
Evaluate if possible `[(1, -2)][(-2, 3),(-1, 4)]`
If A = `[(0, 2),(5, -2)]`, B =` [(1, -1),(3, 2)]` and I is a unit matrix of order 2 × 2, find AI
Given A = `[(4, 1),(2,3)]` and B = `[(1, 0),(-2, 1)]`, find A – B
If A = `[(1, 4),(2, 1)]`, B = `[(-3, 2),(4, 0)]` and C = `[(1, 0),(0, 2)]`, simplify : A2 + BC.
If `[x, y][(x),(y)] = [25]` and `[(-x, y)][(2x),(y)] = [-2]` find x and y if `x, y ∈ Z` (integer)
If P = `|(14 , 17),(13,1)|` and Q = `|(2 , 1),(3 , -3)|` , find matrix M such that P - M = 3Q
If `2[(3, 4),(5, x)] + [(1, y),(0, 1)] = [(z, 0),(10, 5)]` Find the values of x and y