Advertisements
Advertisements
प्रश्न
If A = `[(1, 4),(2, 3)]` and B = `[(1, 2),(3, 1)]` Compute 3A + 4B
उत्तर
A = `[(1, 4),(2, 3)]`
B = `[(1, 2),(3, 1)]`
3A + 4B = `3[(1, 4),(2, 3)] +4[(1, 2),(3, 1)]`
= `[(3, 12),(6, 9)] + [(4, 8),(12, 4)]`
= `[(3 + 4, 12 + 8),(6 + 12, 9 + 4)]`
= `[(7, 20),(18, 13)]`.
APPEARS IN
संबंधित प्रश्न
Given A = `[(2, -6),(2, 0)]`, B = `[(-3, 2),(4, 0)]` and C = `[(4, 0),(0, 2)]`. Find the matrix X such that A + 2X = 2B + C.
Given `A = [(2, -3)], B = [(0, 2)]` and `C = [(-1, 4)]`; find the matrix X in the following:
X + B = C – A
If I is the unit matrix of order 2 × 2; find the matrix M, such that `M - 2I = 3[(-1, 0),(4, 1)]`
Evaluate if possible `[(6, 4),(3, -1)][(-1),(3)]`
If A = `[(2, x),(0, 1)]` and B = `[(4, 36),(0, 1)]`; find the value of x, given that A2 = B.
If `[x, y][(x),(y)] = [25]` and `[(-x, y)][(2x),(y)] = [-2]` find x and y if `x, y ∈ Z` (integer)
If X = `[(4 , 1),(-1 , 2)]`, show that 6X - X2 = 9I, where I is unit matrix.
Given A = `[(1, 4),(2, 3)]` and B = `[(-4, -1),(-3, -2)]` find a matrix C such that C + B = `[(0, 0),(0, 0)]`
Find the matrix B if A = `[(4, 1),(2, 3)]` and A2 = A + 2B
Given A = `[(4, 7),(3, -2)]` and B = `[(1, 2),(-1, 4)]`, then A – 2B is ______.