Advertisements
Advertisements
Question
If A = `[(1, 4), (1, -3)]` and B = `[(1, 2),(-1, -1)]`, find:
- (A + B)2
- A2 + B2
- Is (A + B)2 = A2 + B2 ?
Solution
i.
A + B = `[(1, 4),(1, -3)] + [(1, 2),(-1, -1)]`
= `[((1 + 1, 4 + 2)),((1 - 1, - 3 - 1))]`
= `[(2, 6),(0, -4)]`
Now, (A + B)2 = (A + B)(A + B)
= `[(2, 6),(0, -4)] [(2, 6),(0, -4)]`
= `[((2)(2) + (6)(0), (2)(6) + (6)(-4)), ((0)(2) + (-4)(0), (0)(6) + (-4)(-4))]`
= `[(4, -12),(0, 16)]`
ii.
A2 = `[(1, 4), (1, -3)][(1, 4), (1, -3)]`
= `[(1 + 4, 4 - 12),(1 - 3, 4 + 9)]`
= `[(5, -8),(-2, 13)]`
B2 = `[(1, 2),(-1, -1)][(1,2),(-1, -1)]`
`[(1 -2, 2 - 2),(-1 + 1, -2 + 1)]`
`[(-1, 0),(0, -1)]`
A2 + B2 = `[(5, -8),(-2, 13)] + [(-1, 0),(0, -1)]`
A2 + B2 = `[(4, -8),(-2, 12)]`
iii. No, (A + B)2 ≠ A2 + B2.
APPEARS IN
RELATED QUESTIONS
Find x, y if `[(-2,0),(3,1)][(-1),(2x)] + 3[(-2),(1)] = 2[(y),(3)]`
Given `A = [(1 4),(2 3)] and B = [(-4 -1),(-3 -2)]` Find the matrix C such that C + B = `[(0, 0),(0,0)]`
If I is the unit matrix of order 2 × 2; find the matrix M, such that `M - 2I = 3[(-1, 0),(4, 1)]`
If I is the unit matrix of order 2 × 2; find the matrix M, such that `5M + 3I = 4[(2, -5),(0, -3)]`
If A = `[(2, 1),(0, 0)]`, B = `[(2, 3),(4, 1)]` and C = `[(1, 4),(0, 2)]`; then show that (B – A)C = BC – AC.
If A = `[(1, 2),(3, 4)]`, B = `[(6, 1), (1, 1)]` and C = `[(-2, -3),(0, 1)]`, find the following and state if they are equal CA + B
Given
`"A" = [(2 , -6),(2, 0)] "B" = [(-3, 2),(4, 0)], "C" = [(4, 0),(0, 2)]`
Find the martix X such that A + 2X = 2B + C.
If A = `[(0, -1),(1, 2)]` and B = `[(1, 2),(-1, 1)]` Find the matrix X if : X – 3B = 2A
If A = `[(2, a),(-3, 5)] and "B" = [(-2, 3),(7, b)], "C" = [(c, 9),(-1, -11)]` and 5A + 2B = C, find the values of a,b,c
The additive inverse of matrix A + B, where A = `[(4, 2),(7, -2)]` and B = `[(-2, 1),(3, -4)]` is ______.