Advertisements
Advertisements
Question
If A = `[(sec60°, cos90°),(-3tan45°, sin90°)] and "B" = [(0, cos45°),(-2, 3sin90°)]` Find : 2A – 3B
Solution
Given
A = `[(sec60°, cos90°),(-3tan45°, sin90°)]`
and
B = `[(0, cos45°),(-2, 3sin90°)]`
A = `[(sec60° , cos90°),(-3tan45°, sin90°)] = [(2, 0),(3, 1)]` ...(∵ sec60° = 2, cos90° = 0, tan45° = 1, sin90° = 1)
B = `[(0, cos45°),(-2, 3sin90°)] = [(0, 1),(-2, 3)]` ...(∵ cot45° = 1)
2A – 3B
= `2[(2, 0),(3, 1)] -3[(0, 1),(2, 3)]`
= `[(4, 0),(6, 2)] - [(0, 3),(-6, 9)]`
= `[(4 - 0, 0 - 3),(-6 + 6, 2 - 9)]`
= `[(4, -3),(0, -7)]`.
APPEARS IN
RELATED QUESTIONS
Given matrix B = `[(1, 1),(8, 3)]`. Find the matrix X if, X = B2 – 4B. Hence, solve for a and b given `X[(a),(b)] = [(5),(50)]`.
Given matrix A `[(4 sin 30°, cos 0°),(cos 0°, 4 sin 30°)]` and B = `[(4),(5)]`. If AX = B.
- Write the order of matrix X.
- Find the matrix ‘X’.
if `A = [(3,x),(0,1)], B = [(9,16),(0,-y)]`, Find x and y where `A^2 = B`
If P = `[(1, 2),(2, -1)]` and Q = `[(1, 0),(2, 1)]`, then compute:
- P2 – Q2
- (P + Q)(P – Q)
Is (P + Q)(P – Q) = P2 – Q2 true for matrix algebra?
If `A = [(2, 5),(1, 3)]`, `B = [(4, -2),(-1, 3)]` and I is Identity matrix of same order and `A^t` is the transpose of matrix A find `A^t.B + BI`
Let A = `[(4, -2),(6, -3)]`, B = `[(0, 2),(1, -1)]` and C = `[(-2, 3),(1, -1)]`. Find A2 – A + BC
Given A = `[(p, 0),(0, 2)]`, B = `[(0, -q),(1, 0)]`, C = `[(2, -2),(2, 2)]` and BA = C2. Find the values of p and q.
If A = `|(17 , 5 , 19),(11 , 8 , 13)|` and B =`|(9,3,7),(1,6,5)|` , find 2A - 3B
If `"A" = [(1 , 2),(-2 , 3)], "B" = [(2 , 1),(2 , 3)] "C" = [(-3 , 1),(2 , 0)]` verify that
A(B + C) = AB + AC.
Find the values of x, y, a and b, if `[(3x + 4y, 2, x - 2y),(a + b, 2a - b, -1)] = [(2, 2, 4),(5, 5, 1)]`