Advertisements
Advertisements
Question
If `"A" = [(1 , 2),(-2 , 3)], "B" = [(2 , 1),(2 , 3)] "C" = [(-3 , 1),(2 , 0)]` verify that
A(B + C) = AB + AC.
Solution
B + C = `[(2 , 1),(2 , 3)] + [(-3 , 1),(2 , 0)]`
= `[(2 - 3 , 1 + 1),(2 + 2 , 3 + 0)] = [(-1 , 2),(4 , 3)]`
A(B+ C) = `[(1 , 2),(-2 , 3)][(-1 , 2),(4 , 3)]`
= `[(-1 + 8 , 2 + 6),(2 + 12 , -4 + 9)] = [(7 , 8),(14 , 5)]`
Now AB = `[(6 , 7),(2 , 7)]`
AC = `[(1 , 2),(-2 , 3)][(-3 , 1),(2 , 0)]`
= `[(-3 + 4 , 1 + 0),(6 + 6 , -2 + 0)] = [( 1 , 1),(12 , -2)]`
AB + AC = `[(6 , 7),(2 , 7)] + [(1 , 1),(12 , -2)]`
= `[(6 + 1 , 7 + 1),(2 + 12 , 7 - 2)]`
AB + AC = `[(7 , 8),(14 , 5)]`
Hence A(B + C) = AB + AC.
APPEARS IN
RELATED QUESTIONS
If A = `[(1, 2),(2, 1)]` and B = `[(2, 1),(1, 2)]`; find (AB)B
If A = `|(1215),(1117)|` and B = `|(2,7),(4,9)|` find A - 2B
If M = `|(8,3),(9,7),(4,3)|` and N = `|(4,7),(5,3),(10 , 1)|` find M+N
Given matrix A = `[(4sin30^@,cos0^@), (cos0^@,4sin30^@)] and B = [(4), (5)]` If AX = B.
Write the order of matrix X.
If A = `[(3 , 1),(-1 , 2)]` and I = `[(1 , 0),(0, 1)]`
find A2 - 5A + 7 I.
If `"A" = [(1 , 2),(-2 , 3)], "B" = [(2 , 1),(2 , 3)] "C" = [(-3 , 1),(2 , 0)]` verify that
(AB)C = A(BC),
If A = `[(2 , -1),(-4, 5)]` and B = [0 -3] find the matrix C such that CA = B
Choose the correct answer from the given four options :
If `[(x - 2y, 5),(3, y)] = [(6, 5),(3, -2)]` then the value of x is
Find the values of a and below `[(a + 3, b^2 + 2),(0, -6)] = [(2a + 1, 3b),(0, b^2 - 5b)]`
Find a and b if `[(a - b, b - 4),(b + 4, a - 2)] [(2, 0),(0, 2)] = [(2, -2),(14, 0)]`