Advertisements
Advertisements
Question
Given matrix A `[(4 sin 30°, cos 0°),(cos 0°, 4 sin 30°)]` and B = `[(4),(5)]`. If AX = B.
- Write the order of matrix X.
- Find the matrix ‘X’.
Solution
A = \[\begin{bmatrix} 4 \sin 30^\circ & \cos0^\circ\\ \cos0^\circ & 4 \sin 30^\circ \end{bmatrix}\]and B = \[{\begin{bmatrix} {4}\\{5}\end{bmatrix}}\]
1. Let the order of matrix X = m × n
Order of matrix A = 2 × 2
Order of matrix B = 2 × 1
Now, AX = B
⇒ Order of matrix X = m × n = 2 × 1
2. Let the matrix X = \[\begin{bmatrix}x\\y\end{bmatrix}\]
AX = B
⇒ \[\begin{bmatrix} 4 \sin 30^\circ & \cos0^\circ\\ \cos0^\circ & 4 \sin 30^\circ \end{bmatrix}\] \[\begin{bmatrix}x \\ y\end{bmatrix}\] \[{\begin{bmatrix} {4}\\{5}\end{bmatrix}}\]
⇒\[\begin{bmatrix}4(\frac{1}{2})&1\\1&4(\frac{1}{2})\end{bmatrix}\]\[\begin{bmatrix}x\\y\end{bmatrix}\] = \[\begin{bmatrix}4\\5\end{bmatrix}\]
⇒\[\begin{bmatrix}2&1\\1&2\end{bmatrix}\]\[\begin{bmatrix}x\\y\end{bmatrix}\] = \[\begin{bmatrix}4\\5\end{bmatrix}\]
⇒\[\begin{bmatrix}2x + y\\x + 2y\end{bmatrix}\] = \[\begin{bmatrix}4\\5\end{bmatrix}\]
⇒ 2x + y = 4 ...(i)
And x + 2y = 5 ...(ii)
Subtracting (ii) from (i), we get
⇒ 2x + y – (x + 2y) = 4 – 5
⇒ 2x + y – x – 2y = 4 – 5
x – y = –1 ...(iii)
Adding (i) and (ii), we get
⇒ 2x + y + x + 2y = 4 + 5
⇒ 3x + 3y = 9
⇒ x + y = 3 ...(iv)
Adding (iii) and (iv), we get
2x = 2
⇒ x = 1
Substitute x in (iv), we get y = 2
Hence, the matrix X = \[\begin{bmatrix}1\\2\end{bmatrix}\]
APPEARS IN
RELATED QUESTIONS
If A = `[(3, 1),(-1, 2)]` and I = `[(1, 0),(0, 1)]`, find A2 – 5A + 7I.
Evaluate:
`[(4 sin 30°, 2 cos 60°),(sin 90°, 2 cos 0°)] [(4, 5),(5, 4)]`
If A = `[(1, 2),(2, 1)]` and B = `[(2, 1),(1, 2)]`; find (AB)B
Given A = `[(2, -1),(2, 0)]`, B = `[(-3, 2),(4, 0)]` and C = `[(1, 0),(0, 2)]`, find the matrix X such that : A + X = 2B + C.
If A = `[(3, 7),(2, 4)]`, B = `[(0, 2),(5, 3)]` and C = `[(1, -5),(-4, 6)]`. Find AB – 5C.
Given matrix A = `[(4sin30^@,cos0^@), (cos0^@,4sin30^@)] and B = [(4), (5)]` If AX = B.
Write the order of matrix X.
If `"A" = [(3 , 1),(2 , 1)] and "B" = [(1 , -2),(5 , 3)]`, then show that (A - B)2 ≠ A2 - 2AB + B2.
Find the values of x, y and z if `[(x + 2, 6),(3, 5z)] = [(-5, y^2 + y),(3, 20)]`
Find the values of x, y, a and b if `[(x - 2, y),(a + 2b, 3a - b)] = [(3, 1),(5, 1)]`
Find the values of a and below `[(a + 3, b^2 + 2),(0, -6)] = [(2a + 1, 3b),(0, b^2 - 5b)]`