Advertisements
Advertisements
प्रश्न
Solve for x and y `[(-2,0), (3,1)][(-1), (2x)] +3[(-2), (1)] =2[(y), (3)]`
उत्तर
`[(-2,0), (3,1)][(-1), (2x)] +3[(-2), (1)] =2[(y), (3)]`
`=> [(2+0), (-3+2x)] + [(-6),(3)] = [(2y),(6)]`
`=> [(2), (-3+2x)] + [(-6),(3)] = [(2y),(6)]`
`=> [(2-6), (-3+2x+3)] = [(2y), (6)]`
`=> [(-4), (2x)] = [(2y), (6)]`
`=>` 2y = -4 and 2x = 6
`=>` y =-2 and x = 3
Thus, the values of x andty are: 3,-2
APPEARS IN
संबंधित प्रश्न
Given matrix B = `[(1, 1),(8, 3)]`. Find the matrix X if, X = B2 – 4B. Hence, solve for a and b given `X[(a),(b)] = [(5),(50)]`.
if `A = [(3,x),(0,1)], B = [(9,16),(0,-y)]`, Find x and y where `A^2 = B`
Given A = `[(p, 0),(0, 2)]`, B = `[(0, -q),(1, 0)]`, C = `[(2, -2),(2, 2)]` and BA = C2. Find the values of p and q.
If A = [4 7] and B = [3 l], find : 2A - 3B
Find the value of p and q if:
`[(2p + 1 , q^2 - 2),(6 , 0)] = [(p + 3, 3q - 4),(5q - q^2, 0)]`.
Given that A = `[(3, 0),(0, 4)]` and B = `[(a, b),(0, c)]` and that AB = A + B, find the values of a, b and c.
Let `"A" = [(4 , -2),(6 , -3)], "B" = [(0 , 2),(1 , -1)] and "C" = [(-2 , 3),(1 , -1)]`. Find A2 - A + BC
Let A = `[(1 , 0),(2 , 1)]`, B = `[(2 , 3),(-1 , 0)]`. Find A2 + AB + B2
If `"A" = [(3 , 1),(2 , 1)] and "B" = [(1 , -2),(5 , 3)]`, then show that (A - B)2 ≠ A2 - 2AB + B2.
Find a, b, c and d if `3[(a, b),(c, d)] = [(4, a + b),(c + d, 3)] + [(a, 6),(-1, 2d)]`