Advertisements
Advertisements
प्रश्न
If `"A" = [(3 , 1),(2 , 1)] and "B" = [(1 , -2),(5 , 3)]`, then show that (A - B)2 ≠ A2 - 2AB + B2.
उत्तर
A - B = `[(3 , 1),(2 , 1)] - [(1 , -2),(5 , 3)]`
= `[(3 - 1, 1 + 2),(2 - 5 , 1 - 3)] = [(2 , 3),(-3 , -2)]`
(A - B)2 = (A - B)(A - B)
⇒ (A - B)2 = `[(2 , 3),(-3 , -2)][(2 , 3),(-3 , -2)]`
= `[(4 - 9 , 6 - 6),(-6 + 6 , -9 + 4)]`
= `[(-5 , 0),(0 , -5)]`
and A2 = `[(3 , 1),(2 , 1)][(3 , 1),(2 , 1)]`
= `[(9 + 2 , 3 + 1),(6 + 2 , 2 + 1)] = [(11 , 4),(8 , 3)]`
and B2 = `[(1 , -2),(5 , 3)][(1 , -2),(5 , 3)]`
= `[(1 - 10 , -2 -6),(5 + 15 , -10 + 9)]`
= `[(-9 , -8),(20 , -1)]`
and AB = `[(3 , 1),(2 , 1)][(1 , -2),(5 , 3)]`
= `[(3 + 5 , -6 + 3),(2 + 5 , -4 + 3)] = [(8 , -3),(7 , -1)]`
Now A2 - 2AB + B2
= `[(11 , 4),(8 , 3)] -2 [(8 , -3),(7 , -1)] + [(-9 , -8),(20 , -1)]`
= `[(11 , 4),(8 , 3)] - [(16 , -6),(14 , -2)] + [(-9 , -8),(20 , -1)]`
= `[(11 - 6 - 9 , 4 + 6 - 8),(8 - 14 + 20 , 3 + 2 - 1)]`
= `[(-14 , 2),(14 , 4)]`
Hence, from above calculations, we get
(A - B)2 ≠ A2 - 2AB + B2.
APPEARS IN
संबंधित प्रश्न
Find x and y if `[(x,3x),(y, 4y)] = [(5),(12)]`
Given A = `[(3, -2),(-1, 4)]`, B = `[(6),(1)]`, C = `[(-4),(5)]` and D = `[(2),(2)].` Find : AB + 2C – 4D
If A and B are any two 2 × 2 matrices such that AB = BA = B and B is not a zero matrix, what can you say about the matrix A?
If P = `[(1, 2),(2, -1)]` and Q = `[(1, 0),(2, 1)]`, then compute:
- P2 – Q2
- (P + Q)(P – Q)
Is (P + Q)(P – Q) = P2 – Q2 true for matrix algebra?
Given A = `[(p, 0),(0, 2)]`, B = `[(0, -q),(1, 0)]`, C = `[(2, -2),(2, 2)]` and BA = C2. Find the values of p and q.
Find X and Y , if `|(1,2),(2 , -3)| |(x),(y)| = |(-1) , (12)|`
Given A = `[(p , 0),(0, 2)], "B" = [(0 , -q), (1, 0)], "C" = [(2, -2),(2, 2)]` and BA = C2.
Find the values of p and q.
Find x and y if:
`((-3, 2),(0 , 5)) ((x),(y)) = ((-5),(y))`
If A = `[(3 , 1),(-1 , 2)]` and I = `[(1 , 0),(0, 1)]`
find A2 - 5A + 7 I.
Find a, b, c and d if `3[(a, b),(c, d)] = [(4, a + b),(c + d, 3)] + [(a, 6),(-1, 2d)]`