Advertisements
Advertisements
प्रश्न
Let `"A" = [(4 , -2),(6 , -3)], "B" = [(0 , 2),(1 , -1)] and "C" = [(-2 , 3),(1 , -1)]`. Find A2 - A + BC
उत्तर
`"A" = [(4 , -2),(6 , -3)], "B" = [(0 , 2),(1 , -1)] and "C" = [(-2 , 3),(1 , -1)]`.
∴ A2 = `[(4 , -2),(6 , -3)][(4 , -2),(6 , -3)]`
= `[(16 - 12, -8 +6),(24 - 18, -12 + 9)]`
∴ A2 = `[(4 , -2),(6 , -3)]`
BC = `[(0 , 2),(1 , -1)][(-2 , 3),(1 , -1)] = [(0 + 2 , 0 -2),(-2 - 1, 3 + 1)]`
= `[(2 , -2),(-3 , 4)]`
Now A2 - A + BC
= `[(4 , -2),(6 , -3)] - [(4 , -2),(6 , -3)] + [(2 , -2),(-3 , 4)]`
= `[(0 , 0),(0 , 0)] + [(2 , -2),(-3 , 4)] = [(2 , -2),(-3 , 4)]`
APPEARS IN
संबंधित प्रश्न
Given A = `[(2, 0),(-1, 7)]` and I = `[(1, 0),(0, 1)]` and A2 = 9A + ml. Find m.
If A and B are any two 2 × 2 matrices such that AB = BA = B and B is not a zero matrix, what can you say about the matrix A?
If A = `[(0, -1),(4, -3)]`, B = `[(-5),(6)]` and 3A × M = 2B; find matrix M.
Find x and y, if : `[(x, 3x),(y, 4y)][(2),(1)] = [(5),(12)]`.
Let A = `[(4, -2),(6, -3)]`, B = `[(0, 2),(1, -1)]` and C = `[(-2, 3),(1, -1)]`. Find A2 – A + BC
Given `[["4 " " 2" ],[" -1 "" 1 " ]]` M = 6I , where M is a matrix and I is unit matrix of order 2×2.
(i) State the order of matrix M.
(ii) Find the matrix M.
Let A = `[(2, 1),(0, -2)]`, B = `[(4, 1),(-3, -2)]` and C = `[(-3, 2),(-1, 4)]`. Find A2 + AC – 5B.
Find the value of p and q if:
`[(2p + 1 , q^2 - 2),(6 , 0)] = [(p + 3, 3q - 4),(5q - q^2, 0)]`.
Given A = `[(p , 0),(0, 2)], "B" = [(0 , -q), (1, 0)], "C" = [(2, -2),(2, 2)]` and BA = C2.
Find the values of p and q.
If A = `[(sec60°, cos90°),(-3tan45°, sin90°)] and "B" = [(0, cos45°),(-2, 3sin90°)]` Find : BA