Advertisements
Advertisements
प्रश्न
Solve for x and y `[(-2,0), (3,1)][(-1), (2x)] +3[(-2), (1)] =2[(y), (3)]`
उत्तर
`[(-2,0), (3,1)][(-1), (2x)] +3[(-2), (1)] =2[(y), (3)]`
`=> [(2+0), (-3+2x)] + [(-6),(3)] = [(2y),(6)]`
`=> [(2), (-3+2x)] + [(-6),(3)] = [(2y),(6)]`
`=> [(2-6), (-3+2x+3)] = [(2y), (6)]`
`=> [(-4), (2x)] = [(2y), (6)]`
`=>` 2y = -4 and 2x = 6
`=>` y =-2 and x = 3
Thus, the values of x andty are: 3,-2
APPEARS IN
संबंधित प्रश्न
If A = `[(1, 3),(3, 4)]`, B = `[(-2, 1),(-3, 2)]` and A2 – 5B2 = 5C. Find matrix C where C is a 2 by 2 matrix.
Given matrix B = `[(1, 1),(8, 3)]`. Find the matrix X if, X = B2 – 4B. Hence, solve for a and b given `X[(a),(b)] = [(5),(50)]`.
if A = `[(2,3),(5,7)]`, B = `[(0,4),(-1,7)]` and c = `[(1,0),(-1, 4)]`, find AC + B2 – 10C.
If A = `[(3, 1),(-1, 2)]` and I = `[(1, 0),(0, 1)]`, find A2 – 5A + 7I.
If A = `[(2, 5),(1, 3)]`, B = `[(4, -2),(-1, 3)]` and I is the identity matric of the same order and At is the transpose of matrix A, find At.B + BI.
If A = `|(17 , 5 , 19),(11 , 8 , 13)|` and B =`|(9,3,7),(1,6,5)|` , find 2A - 3B
Find x, y if `[(-2, 0),(3, 1)] [(-1),(2x)] +3[(-2),(1)] = 2[(y),(3)]`.
Given that A = `[(3, 0),(0, 4)]` and B = `[(a, b),(0, c)]` and that AB = A + B, find the values of a, b and c.
Find X and Y, if
`[(2x, x),(y , 3y)][(3),(2)] = [(16),(9)]`
If A = `[(3/5, 2/5),(x, y)]` and A2 = I, find x,y