Advertisements
Advertisements
प्रश्न
If A = `[(1,3), (3,4)]` B = `[(-2,1), (-3,2)]` and `A^2 - 5B^2 = 5C` Find the matrix C where C is a 2 by 2 matrix.
उत्तर
A2 − 5B2 = 5C
`A = [(1,3),(3,4)], B = [(-2,1),(-3,2)]`
Step 1: Compute A2
`A^2 = A.A = [(1,3),(3,4)].[(1,3),(3,4)]`
Perform matrix multiplication:
`A^2 = [(1xx1 + 3xx3,1xx3+3xx4),(3xx1+4xx3,3xx3+4xx4)]`
`A^2 = [(1+9,3+12),(3+12,9+16)]`
`A^2 = [(10,15),(15,25)]`
Step 2: Compute B2
`B^2 = BxxB = [(-2,1),(-3,2)]xx[(-2,1),(-3,2)]`
Perform matrix multiplication:
`B^2 = [(-2xx-2+1xx-3,-2xx1+1xx2),(-3xx-2+2xx-3,-3xx1+2xx2)]`
`B^2 = [(4-3,-2+2),(6-6,-3+4)]`
`B^2 = [(1,0),(0,1)]`
Step 3: Compute 5B2
`5B^2 = 5xx[(1,0),(0,1)]`
`5B^2 = [(5,0),(0,5)]`
Step 4: Compute A2−5B2
`A^2 - 5B^2 = [(10,15),(15,25)]-[(5,0),(0,5)]`
`A^2 - 5B^2 = [(10-5,15-0),(15-0,25-5)]`
`A^2 - 5B^2 = [(5,15),(15,20)]`
Step 5: Solve for C
`A^2 - 5B^2 = 5C`
`5C = [(5,15),(15,20)]`
Divide each element by 5:
`C= [(1,3),(3,4)]`
APPEARS IN
संबंधित प्रश्न
If A = `[(3, a),(-4, 8)]`, B = `[(c, 4),(-3, 0)]`, C = `[(-1, 4),(3, b)]` and 3A – 2C = 6B, find the values of a, b and c.
Given A = `[(p, 0),(0, 2)]`, B = `[(0, -q),(1, 0)]`, C = `[(2, -2),(2, 2)]` and BA = C2. Find the values of p and q.
Let A = `[(2, 1),(0, -2)]`, B = `[(4, 1),(-3, -2)]` and C = `[(-3, 2),(-1, 4)]`. Find A2 + AC – 5B.
Solve for x and y `[(-2,0), (3,1)][(-1), (2x)] +3[(-2), (1)] =2[(y), (3)]`
If A = `[(3 , 1),(-1 , 2)]` and I = `[(1 , 0),(0, 1)]`
find A2 - 5A + 7 I.
If A = `[(1 , 0),(-1 ,7)]` and I = `[(1 , 0),(0 ,1)]`, then find k so that A2 = 8A + kI.
Find the value of x if `[(3x + y, -y),(2y - x, 3)] = [(1, 2),(-5, 3)]`
Choose the correct answer from the given four options :
If `[(x + 2y, 3y),(4x, 2)] = [(0, -3),(8, 2)]` then the value of x – y is
Choose the correct answer from the given four options :
If `x[(2),(3)] + y[(-1),(0)] = [(10),(6)]` then the values of x and y are
If A = `[(sec60°, cos90°),(-3tan45°, sin90°)] and "B" = [(0, cos45°),(-2, 3sin90°)]` Find : BA