Advertisements
Advertisements
Question
If A = `[(3, -4),(-1, 2)]`, find matrix B such that BA = I,where I is unity matrix of order 2
Solution
A = `[(3, -4),(-1, 2)]`
BA = I, where I is unity matrix of order 2
∴ I = `[(1, 0),(0, 1)]`
Let B = `[(a, b),(c, d)]`
∴ BA = `[(a, b),(c,d)] xx [(3, -4),(-1, 2)] `
= `[(3a - b, -4a + 2b),(3c - d, -4c + 2d)]`
∴ `[(3a - b, -4a + 2b),(3c - d, -4c + 2d)] = [(1, 0),(0, 1)]`
Comparing the corresponding terms, we get
3a – b = 1,
–4a + 2b = 0
⇒2b = 4a
⇒ b = 2a
∴ 3a – b = 1
⇒ 3a – 2a = 1
⇒ a = 1
and
b = 2a
⇒ b = 2 x 1 = 2
∴ a = 1, b = 2
and
3c – d = 0
⇒ d = 3c
–4c + 2d = 1
⇒ –4c + 2 x 3c = 1
⇒ –4c + 6c = 1
⇒ 2x = 1
⇒ c = `(1)/(2)`
and
d = 3c = `3 xx (1)/(2) = (3)/(2)`
Hence a = 1, b = 2, c = `(1)/(2), "d" = (3)/(2)`
∴ Matrix B = `[(1, 2),(1/2, 3/2)]`.
APPEARS IN
RELATED QUESTIONS
If A = `[(1, 3),(3, 4)]`, B = `[(-2, 1),(-3, 2)]` and A2 – 5B2 = 5C. Find matrix C where C is a 2 by 2 matrix.
Find the value of and 'y' if:
`2[(x,y),(9 , (y - 5))] + [(6,4),(-7,5)] = [(10,7),(22,15)]`
if `A [(3,7),(2,4)], B = [(0,2),(5,3)]` and `C = [(1,-5),(-4,6)]` Find AB - 5C
Find x and y if `[(x,3x),(y, 4y)] = [(5),(12)]`
If A and B are any two 2 × 2 matrices such that AB = BA = B and B is not a zero matrix, what can you say about the matrix A?
If A = `[(1, 2),(2, 1)]` and B = `[(2, 1),(1, 2)]`; find A(BA)
If P = `|(2,9),(5 , 7)|` and Q = `|(7 , 3),(4 , 1)|` find 3P - 2Q
If A = `[(3, x),(0, 1)]` and B = `[(9, 16),(0, -y)]`, find x and y when A2 = B.
If A = `[(3, 7),(2, 4)]`, B = `[(0, 2),(5, 3)]` and C = `[(1, -5),(-4, 6)]`. Find AB – 5C.
Find x, y if `[(-2, 0),(3, 1)] [(-1),(2x)] +3[(-2),(1)] = 2[(y),(3)]`.