Advertisements
Advertisements
प्रश्न
If A = `[(0, -1),(4, -3)]`, B = `[(-5),(6)]` and 3A × M = 2B; find matrix M.
उत्तर
Let the order of matrix M be a × b.
3A × M = 2B
`3[(0, -1),(4, -3)]_(2xx2) xx M_(a xx b) = 2[(-5), (6)]_(2 xx 1)`
Clearly, the order of matrix M is 2 × 1
Let `M = [(x),(y)]`
Then,
`3[(0, -1),(4, -3)] xx [(x),(y)] = 2[(-5),(6)]`
`[(0, -3),(12, -9)] xx [(x),(y)] = [(-10),(12)]`
`[(0 xx x + (-3)y),(12 xx x + (-9)y)] = [(-10),(12)]`
`[(0 - 3y),(12x - 9y)] = [(-10),(12)]`
`[(-3y),(12x - 9y)] = [(-10),(12)]`
Comparing the corresponding elements, we get
∴ –3y = –10
`=> y = 10/3`
12x – 9y = 12
`=> 12x - (9 xx 10)/3 = 12`
`=>` 12x – 30 = 12
`=>` 12x = 12 + 30
`=>` 12x = 42
∴ `x = 42/12 = 7/2`
∴ `M = [(7/2),(10/3)]`
APPEARS IN
संबंधित प्रश्न
If matrix X = `[(-3, 4),(2, -3)][(2),(-2)]` and 2X – 3Y = `[(10),(-8)]`, find the matrix ‘X’ and matrix ‘Y’.
Given A = `[(2, -1),(2, 0)]`, B = `[(-3, 2),(4, 0)]` and C = `[(1, 0),(0, 2)]`, find the matrix X such that : A + X = 2B + C.
Given A = `[(p, 0),(0, 2)]`, B = `[(0, -q),(1, 0)]`, C = `[(2, -2),(2, 2)]` and BA = C2. Find the values of p and q.
If A = [4 7] and B = [3 l], find: A - B
Find X and Y , if `|(1,2),(2 , -3)| |(x),(y)| = |(-1) , (12)|`
Given matrix A = `[(4sin30^@,cos0^@), (cos0^@,4sin30^@)] and B = [(4), (5)]` If AX = B.
Find the matrix 'X'
If `"A" = [(1 , 2),(-2 , 3)], "B" = [(2 , 1),(2 , 3)] "C" = [(-3 , 1),(2 , 0)]` verify that
(AB)C = A(BC),
Find the value of x if `[(3x + y, -y),(2y - x, 3)] = [(1, 2),(-5, 3)]`
Find the values of a, b, c and d if `[(a + b, 3),(5 + c, ab)] = [(6, d),(-1, 8)]`
Choose the correct answer from the given four options :
If B = `[(1, 5),(0, 3)]` and A – 2B = `[(0, 4),(-7, 5)]` then the matrix A is equal to