Advertisements
Advertisements
प्रश्न
If A = `[(2, -1),(-4, 5)] and "B" = [(-3),(2)]` find the matrix C such that AC = B
उत्तर
Given
A = `[(2, -1),(-4, 5)]`
B = `[(-3),(2)]`
Let martix C = `[(x),(y)]`
∴ AC = `[(2, -1),(-4, 5)][(x),(y)] = [(2x - y),(-4x + 5y)]`
But AC = B
∴ `[(2x - y),(-4x + 5y)] = [(-3),(2)]`
Comparing the corresponding elements
2x – y = –3 ...(i)
–4x + 5y = 2 ...(ii)
Multiplying (i) by 5 and (ii) by 1
10x – 5y = –15
–4x + 5y = 2
Adding, we get
6x = –13
⇒ x = `(-13)/(6)`
Substituting the value of x in (i)
`2((-13)/6) - y` = –3
⇒ `(-13)/(3) - y` = –3
–y = `–3 + (13)/(3)`
= `(-9 + 13)/(3)`
= `(4)/(3)`
∴ y = `-(4)/(3)`
∴ Matrix C = `[((-13)/6),(-4/3)]`.
APPEARS IN
संबंधित प्रश्न
Given matrix B = `[(1, 1),(8, 3)]`. Find the matrix X if, X = B2 – 4B. Hence, solve for a and b given `X[(a),(b)] = [(5),(50)]`.
Given matrix A `[(4 sin 30°, cos 0°),(cos 0°, 4 sin 30°)]` and B = `[(4),(5)]`. If AX = B.
- Write the order of matrix X.
- Find the matrix ‘X’.
if A = `[(2,3),(5,7)]`, B = `[(0,4),(-1,7)]` and c = `[(1,0),(-1, 4)]`, find AC + B2 – 10C.
Evaluate:
`[(cos 45°, sin 30°),(sqrt(2) cos 0°, sin 0°)] [(sin 45°, cos 90°),(sin 90°, cot 45°)]`
Find x and y, if : `[(x, 3x),(y, 4y)][(2),(1)] = [(5),(12)]`.
If matrix X = `[(-3, 4),(2, -3)][(2),(-2)]` and 2X – 3Y = `[(10),(-8)]`, find the matrix ‘X’ and matrix ‘Y’.
Find the positive integers p and q such that :
`[p q][p/q]= [25]`
If A = [4 7] and B = [3 l], find : 2A - 3B
Solve for x and y `[(-2,0), (3,1)][(-1), (2x)] +3[(-2), (1)] =2[(y), (3)]`
If A = `[(sec60°, cos90°),(-3tan45°, sin90°)] and "B" = [(0, cos45°),(-2, 3sin90°)]` Find : BA