Advertisements
Advertisements
प्रश्न
Find the value of p and q if:
`[(2p + 1 , q^2 - 2),(6 , 0)] = [(p + 3, 3q - 4),(5q - q^2, 0)]`.
उत्तर
2p + 1 = p + 3;
2p - p = 3 - 1
p = 2 ...(1)
q2 - 2 = 3q - 4
q2 - 3q + 2 = 0
q2 - 2q - q + 2 = 0
q(q - 2) - (q - 2) = 0
(q - 2) (q - 1) = 0 ...(2)
5q - q2 = 6
q2 - 5q + 6 = 0
(q - 3) (q - 2) = 0 ...(3)
By equation (2) and (3)
q = 2
⇒ p = 2, q = 2.
APPEARS IN
संबंधित प्रश्न
If A = `[(3, 1),(-1, 2)]` and I = `[(1, 0),(0, 1)]`, find A2 – 5A + 7I.
Solve for x and y :
`[(3,-1),(2,-1)][(-2),(4)]=[(x),(y)]`
Find the positive integers p and q such that :
`[p q][p/q]= [25]`
Find X and Y , if `|(1,2),(2 , -3)| |(x),(y)| = |(-1) , (12)|`
Let A = `[(2, 1),(0, -2)]`, B = `[(4, 1),(-3, -2)]` and C = `[(-3, 2),(-1, 4)]`. Find A2 + AC – 5B.
Solve for x and y `[(-2,0), (3,1)][(-1), (2x)] +3[(-2), (1)] =2[(y), (3)]`
Evaluate x,y if
`[(3 , -2),(-1 , 4)][(2x),(1)]+2[(-4),(5)] = [(8),(4y)]`
Find the values of x and y if : `[(2x + y),(3x - 2y)] = [(5),(4)]`
Choose the correct answer from the given four options :
If B = `[(1, 5),(0, 3)]` and A – 2B = `[(0, 4),(-7, 5)]` then the matrix A is equal to
If A = `[(sec60°, cos90°),(-3tan45°, sin90°)] and "B" = [(0, cos45°),(-2, 3sin90°)]` Find : A2