Advertisements
Advertisements
Question
If A = `[(1 , -2),(2, -1)] and "B" = [(3, 2),(-2, 1)]` Find 2B – A2
Solution
A = `[(1 , -2),(2, -1)]`
B = `[(3, 2),(-2, 1)]`
2B = `2[(3, 2),(-2, 1)]`
= `[(6, 4),(-4, 2)]`
A2 = A x A = `[(1, -2),(2, -1)] [(1, -2),(2, -1)]`
= `[(1 - 4, -2 + 2),(2 - 2, -4 + 1)]`
= `[(-3, 0),(0, -3)]`
∴ 2B – A2 = `[(6, 4),(-4, 2)] - [(3-, 0),(0, -3)]`
= `[(6 - (-3), 4 - 0),(-4 - 0, 2 - (-3))]`
= `[(6 + 3, 4),(-4, 2 + 3)]`
= `[(9, 4),(-4, 5)]`.
APPEARS IN
RELATED QUESTIONS
Given A = `[(0, 4, 6),(3, 0, -1)]` and B = `[(0, 1),(-1, 2),(-5, -6)]`, find if possible BA
If A = `[(2, 1, -1),(0, 1, -2)]`, Find A . At where At is the transpose of matrix A.
If A = `[(2, 4),(3, 2)]` and B = `[(1, 3),(-2, 5)]`
find BA.
Given A = `[(1 , 1),(8 , 3)]` evaluate A2 - 4A.
If A = `[(1, 2),(2, 1)] and "B" = [(2, 1),(1, 2)]`, fin A(BA)
If X = `[(4, 1),(-1, 2)]`,show that 6X – X² = 9I Where I is the unit matrix.
Find the matrix X of order 2 × 2 which satisfies the equation `[(3, 7),(2, 4)] [(0, 2),(5, 3)] + 2"X" = [(1, -5),(-4, 6)]`
If A = `[(2, x),(0, 1)] and "B" = [(4, 36),(0, 1)]`,find the value of x, given that A2 – B
If A = `[(2, 3),(1, 2)]` find x and y so that A² – xA + yI
Choose the correct answer from the given four options :
If A = `[(0, 0),(1, 0)]`, then A2 =