Advertisements
Advertisements
Question
If `|(2"a" + "b" , "c"),("d" , 3"a" - "b")|` = `|(4 , 3"a"),(7 , 6)|` , find the values of a , b , c and d.
Solution
Given ,
`|(2"a" + "b" , "c"),("d" , 3"a" - "b")|_(2 xx 2)` = `|(4 , 3"a"),(7 , 6)|_(2 xx 2)`
2a + b = 4 -(1)
3a - b = 6 -(2)
Adding (1) and (2), we get
5 a = 10
⇒ a = 2
from (1)
2(2) + b = 4
⇒ b = 0
C = 3a
⇒ C = 3 x 2
⇒ c = 6
⇒ d = 7
APPEARS IN
RELATED QUESTIONS
Find x, y if `[(-2,0),(3,1)][(-1),(2x)] + 3[(-2),(1)] = 2[(y),(3)]`
Given `A = [(-1, 0),(2, -4)]` and `B = [(3, -3),(-2, 0)]`; find the matrix X in the following:
A + X = B
Given A = `[(-3, 6),(0, -9)]` and At is its transpose matrix. Find `A^t - 1/3 A`
If A = `[(0, 2),(5, -2)]`, B = `[(1, -1),(3, 2)]` and I is a unit matrix of order 2 × 2, find BA
Given A = `[(4, 1),(2, 3)]` and B = `[(1, 0),(-2, 1)]`, find A2 – AB + 2B
If A = `[(2, 1),(0, 0)]`, B = `[(2, 3),(4, 1)]` and C = `[(1, 4),(0, 2)]`; then show that (B – A)C = BC – AC.
If `[(x, y)][(x),(y)] = [25]` and `[(-x, y)][(2x),(y)] = [-2]`; find x and y, if:
- x, y ∈ W (whole numbers)
- x, y ∈ Z (integers)
Let A be a 2 x 2 matrix and let I be an identity matrix of the order 2 x 2. Prove that AI = IA = A.
Solve the matrix equation `[(2, 1),(5, 0)] -3"X" = [(-7, 4),(2, 6)]`
If `2[(3, 4),(5, x)] + [(1, y),(0, 1)] = [(z, 0),(10, 5)]` Find the values of x and y