Advertisements
Advertisements
प्रश्न
If `|(2"a" + "b" , "c"),("d" , 3"a" - "b")|` = `|(4 , 3"a"),(7 , 6)|` , find the values of a , b , c and d.
उत्तर
Given ,
`|(2"a" + "b" , "c"),("d" , 3"a" - "b")|_(2 xx 2)` = `|(4 , 3"a"),(7 , 6)|_(2 xx 2)`
2a + b = 4 -(1)
3a - b = 6 -(2)
Adding (1) and (2), we get
5 a = 10
⇒ a = 2
from (1)
2(2) + b = 4
⇒ b = 0
C = 3a
⇒ C = 3 x 2
⇒ c = 6
⇒ d = 7
APPEARS IN
संबंधित प्रश्न
Given A = `[(2, -6),(2, 0)]`, B = `[(-3, 2),(4, 0)]` and C = `[(4, 0),(0, 2)]`. Find the matrix X such that A + 2X = 2B + C.
Evaluate:
`6[(3),(-2)] -2[(-8),(1)]`
Find x and y if `x[(-1), (2)] - 4[(-2), (y)] = [(7),(-8)]`
Given A = `[(-3, 6),(0, -9)]` and At is its transpose matrix. Find 2At – 3A
Given A = `[(-3, 6),(0, -9)]` and At is its transpose matrix. Find `1/2 A - 1/3 A^t`
Evaluate if possible `[(1, -2)][(-2, 3),(-1, 4)]`
If A = `[(2, 0),(-3, 1)]` and B = `[(0, 1),(-2, 3)]` find 2A – 3B
If `[(5, 2),(-1, y + 1)] -2 [(1, 2x - 1),(3, -2)] = [(3, -8),(-7, 2)]` Find the values of x and y
If A = `[(-3, -7),(0, -8)]` and A – B = `[(6, 4),(-3, 0)]`, then matrix B is ______.
If A = `[(1, 0),(1, 1)]`, B = `[(0, 1),(1, 0)]` and C = `[(1, 1),(0, 0)]`, the matrix A2 + 2B – 3C is ______.