Advertisements
Advertisements
प्रश्न
If x = `(2a + b)/(a + b)` find the value of `(x + a)/(x - a) + (x + b)/(x - b)`
उत्तर
x = `(2a + b)/"a + b"`
⇒ `x/a = (2b)/"a + b"`
Applying componendo and dividendo,
`"x + a"/"x - a" = (2b + a + b)/(2b - a - b) = (3b + a)/"b - a"` ...(i)
Again `x/b = (2a)/"a + b"`
Applying componendo and dividendo,
`"x + b"/"x - b" = (2a + a + b)/(2a - a - b) = (3a + b)/"a - b"` ...(ii)
Adding (i) and (ii)
`"x + a"/"x - a" + "x + b"/"x - b"`
= `(3b + a)/"b - a" + (3a + b)/"a - b"`
= `-(a + 3b)/"a - b" + (3a + b)/"a - b"`
= `(-a - 3b + 3a + b)/"a - b"`
= `(2a - 2b)/"a - b"`
= `(2(a - b))/"a - b"`
= 2.
APPEARS IN
संबंधित प्रश्न
If a : b = c : d, prove that: 5a + 7b : 5a – 7b = 5c + 7d : 5c – 7d.
If `x = (6ab)/(a + b)`, find the value of `(x + 3a)/(x - 3a) + (x + 3b)/(x - 3b)`.
Using the properties of proportion solve for x given `(x^4 + 1)/(2x^2) = 17/8`
Find x, if `16((a - x)/(a + x))^3 = (a + x)/(a - x)`.
If y = `(sqrt(a + 3b) + sqrt(a - 3b))/(sqrt(a + 3b) - sqrt(a - 3b))`, show that 3by2 - 2ay + 3b = 0.
Given : x = `(sqrt(a^2 + b^2)+sqrt(a^2 - b^2))/(sqrt(a^2 + b^2)-sqrt(a^2 - b^2))`
Use componendo and dividendo to prove that `b^2 = (2a^2x)/(x^2 + 1)`.
If a : b : : c : d, prove that `(5a + 11b)/(5c + 11d) = (5a - 11b)/(5c - 11d)`
If a : b : : c : d, prove that (la + mb) : (lc + mb) :: (la – mb) : (lc – mb)
If `(5x + 7y)/(5u + 7v) = (5x - 7y)/(5u - 7v)`, show that `x/y = u/v`
If `(x^2 - 1)/(x^2 + 1) = 3/5`, the value of x is ______.