Advertisements
Advertisements
प्रश्न
If (a + 3b + 2c + 6d) (a – 3b – 2c + 6d) = (a + 3b – 2c – 6d) (a – 3b + 2c – 6d), prove that a : b :: c : d.
उत्तर
`(a + 3b + 2c + 6d)/(a – 3b – 2c + 6d) = (a + 3b – 2c – 6d)/(a – 3b + 2c – 6d)`
⇒ `(a + 3b + 2c + 6d)/(a + 3b – 2c – 6d) = (a – 3b + 2c – 6d)/(a – 3b – 2c + 6d)` ...(by altenendo)
Applying componendo and dividendo
`(a + 3b + 2c + 6d + a + 3b - 2c - 6d)/(a + 3b + 2c + 6d - a - 3b + 2c + 6d)`
= `(a - 3b + 2c - 6d + a - 3b - 2c + 6d)/(a – 3b + 2c - 6d - a + 3b + 2c - 6d)`
⇒ `(2(a + 3b))/(2(2c + 6d)) = (2(a - 3b))/(2(2c - 6d)`
⇒ `(a + 3b)/(2c + 6d) = (a - 3b)/(2c - 6d)` ...(Dividing by 2)
⇒ `(a + 3b)/(a - 3b) = (2c + 6d)/(2c - 6d)` ...(By alternendo)
Again applying componendo and dividendo
`(a + 3b + a - 3b)/(a + 3b - a + 3b) = (2c + 6d + 2c 6d)/(2c + 6d - 2c + 6d)`
⇒ `(2a)/(6b) = (4c)/(12d) = (2c)/(6d)`
⇒ `a/b = c/d. ...["Dividing by" 2/6]`
APPEARS IN
संबंधित प्रश्न
If `(7m + 2n)/(7m - 2n) = 5/3`, use properties of proportion to find:
- m : n
- `(m^2 + n^2)/(m^2 - n^2)`
If a : b = c : d, prove that: xa + yb : xc + yd = b : d.
Using the properties of proportion solve for x given `(x^4 + 1)/(2x^2) = 17/8`
If `(3x + 5y)/(3x - 5y) = (7)/(3)`, find x : y.
If `(3x + 4y)/(3u + 4v) = (3x - 4y)/(3u - 4v)`, then show that `x/y = u/v`.
If `(5x + 7y)/(5u + 7v) = (5x - 7y)/(5u - 7v)`, show that `x/y = u/v`
Given that `(a^3 + 3ab^2)/(b^3 + 3a^2b) = (63)/(62)`. Using componendo and dividendo find a: b.
If `(by + cz)/(b^2 + c^2) = (cz + ax)/(c^2 + a^2) = (ax + by)/(a^2 + b^2)`, prove that each of these ratio is equal to `x/a = y/b = z/c`
Using Componendo and Dividendo solve for x:
`(sqrt(2x + 2) + sqrt(2x - 1))/(sqrt(2x + 2) - sqrt(2x - 1))` = 3
If `x/(a + b - c) = y/(b + c - a) = z/(c + a - b) = 5` and a + b + c = 7; the value of x + y + z is ______.