Advertisements
Advertisements
प्रश्न
If x = `(8ab)/"a + b"` find the value of `(x + 4a)/(x - 4a) + (x + 4b)/(x - 4b)`
उत्तर
x = `(8ab)/"a + b"`
⇒ `x/(4a) = (2b)/"a + b"`
Applying componendo and dividendo,
`(x + 4a)/(x - 4a) = (2b + a + b)/(2b - a - b) = (3b + a)/(b - a)` ...(i)
Again `x/(4b) = (2a)/"a + b"`
Applying componendo and dividendo,
`(x+ 4b)/(x - 4b) = (2a + a + b)/(2a -a - b) = (3a + b)/(a - b)` ...(ii)
Adding (i) and (ii)
`(x + 4a)/(x - 4a) + (x + 4b)/(x - 4b)`
= `(3b + a)/(b - a) + (3a + b)/(a - b)`
= `-(a + 3b)/(a - b) + (3a + b)/(a - b)`
= `(-a - 3b + 3a + b)/(a - b)`
= `(2a - 2b)/(a - b)`
= `(2(a - b))/(a - b)`
= 2.
APPEARS IN
संबंधित प्रश्न
If `x = (6ab)/(a + b)`, find the value of `(x + 3a)/(x - 3a) + (x + 3b)/(x - 3b)`.
If `(a - 2b - 3c + 4d)/(a + 2b - 3c - 4d) = (a - 2b + 3c - 4d)/(a + 2b + 3c + 4d)`, show that: 2ad = 3bc.
If 7x – 15y = 4x + y, find the value of x : y. Hence, use componendo and dividendo to find the values of:
`(9x + 5y)/(9x - 5y)`
If `(x^2 + y^2)/(x^2 - y^2) = 2 1/8`, find: `x/y`
If `(x^2 + y^2)/(x^2 - y^2) = 2 1/8`, find: `(x^3 + y^3)/(x^3 - y^3)`
If (11a² + 13b²) (11c² – 13d²) = (11a² – 13b²)(11c² + 13d²), prove that a : b :: c : d.
Find x from the following equations : `(3x + sqrt(9x^2 - 5))/(3x - sqrt(9x^2 - 5)) = (5)/(1)`
If x = `(sqrt(a + 1) + sqrt(a - 1))/(sqrt(a + 1 - sqrt(a - 1)`, using properties of proportion, show that x2 – 2ax + 1 = 0
If `(x^2 - 4)/(x^2 + 4) = 3/5`, the value of x is ______.
If (a + b) : (a – b) = 13 : 3 ; a : b is ______.