Advertisements
Advertisements
प्रश्न
If x = `(sqrt(a + 1) + sqrt(a - 1))/(sqrt(a + 1 - sqrt(a - 1)`, using properties of proportion, show that x2 – 2ax + 1 = 0
उत्तर
We have x = `(sqrt(a + 1) + sqrt(a - 1))/(sqrt(a + 1 - sqrt(a - 1)`
⇒ `(x + 1)/(x - 1) = (2sqrt(a + 1))/(2sqrt(a - 1)`
(Applying componendo and dividendo)
⇒ `((x + 1)^2)/((x - 1)^2) = (a + 1)/(a - 1)`
⇒ `((x + 1)^2 + (x - 1)^2)/((x + 1)^2 - (x - 1)^2) = (2a)/(2)`
(Again applying componendo and dividendo)
⇒ `(x^2 + 1 + 2x + x^2 + 1 - 2x)/(x^2 + 1 + 2x - x^2 - 1 + 2x)` = a
⇒ `(2x^2 + 2)/(4x)` = a
⇒ `(2(x^2 + 1))/(4x)` = a
⇒ `((x^2 + 1))/(2x)` = a
⇒ 2ax = x2 + 1
⇒ x2 – 2ax + 1 = 0
Proved.
APPEARS IN
संबंधित प्रश्न
If a : b = c : d, prove that: (9a + 13b)(9c – 13d) = (9c + 13d)(9a – 13b).
If (a + b + c + d) (a – b – c + d) = (a + b – c – d) (a – b + c – d), prove that a : b = c : d.
If a : b =c : d, then prove that `("a"^2 + "c"^2)/("b"^2 + "d"^2) = ("ac")/("bc")`
If x = `(root (3)("m + 1") + root (3)("m - 1"))/(root (3)("m + 1") + root (3)("m - 1")` then prove that x3 - 3mx2 + 3x = m
Show, that a, b, c, d are in proportion if:
(6a + 7b) : (6c + 7d) : : (6a - 7b) : (6c - 7d)
Find the value of
`(x + sqrt(3))/(x - sqrt(3)) + (x + sqrt(2))/(x - sqrt(2)), if x = (2sqrt(6))/(sqrt(3) + sqrt(2)`.
If a : b : : c : d, prove that `(2a +5b)/(2a - 5b) = (2c + 5d)/(2c - 5d)`
If x = `(8ab)/"a + b"` find the value of `(x + 4a)/(x - 4a) + (x + 4b)/(x - 4b)`
Solve `(1 + x + x^2)/(1 - x + x^2) = (62(1 +x))/(63(1 + x)`
Solve for `x : 16((a - x)/(a + x))^3 = (a + x)/(a - x)`