Advertisements
Advertisements
प्रश्न
If (pa + qb) : (pc + qd) :: (pa – qb) : (pc – qd) prove that a : b : : c : d
उत्तर
(pa + qb) : (pc + qd) :: (pa – qb) : (pc – qd)
⇒ `"pa + qb"/"pc + qd" = "pq - qb"/"pc - qd"`
⇒ `"pa + qb"/"pc - qd" = "pq + qb"/"pc - qd"`
Applying componendo and dividendo
⇒ `"pa + qb + pa - qb"/"pa + qb - pa + qb" = "pc + qs + pc - qd"/"pc - qd - pc + qd"`
⇒ `(2pa)/(2qb) = (2pc)/(2qd)`
⇒ `a/b = c/d ...("Dividing by" (2p)/(2q))`
Hence a : b :: c = d.
APPEARS IN
संबंधित प्रश्न
Given `(x^3 + 12x)/(6x^2 + 8) = (y^3+ 27y)/(9y^2 + 27)`. Using componendo and dividendo find x : y.
if `(x^2 + y^2)/(x^2 - y^2) = 17/8`then find the value of :
1) x : y
2) `(x^3 + y^3)/(x^3 - y^3)`
If `(a - 2b - 3c + 4d)/(a + 2b - 3c - 4d) = (a - 2b + 3c - 4d)/(a + 2b + 3c + 4d)`, show that: 2ad = 3bc.
If a : b : : c : d, then prove that
`(4"a" + 9"b")/(4"c" + 9"d") = (4"a" - 9"b")/(4"c" - 9"d")`
If y = `(sqrt(a + 3b) + sqrt(a - 3b))/(sqrt(a + 3b) - sqrt(a - 3b))`, show that 3by2 - 2ay + 3b = 0.
If `(3x + 4y)/(3u + 4v) = (3x - 4y)/(3u - 4v)`, then show that `x/y = u/v`.
If `(8a - 5b)/(8c - 5a) = (8a + 5b)/(8c + 5d)`, prove that `a/b = c/d`
If x = `(4sqrt(6))/(sqrt(2) + sqrt(3)` find the value of `(x + 2sqrt(2))/(x - 2sqrt(2)) + (x + 2sqrt(3))/(x - 2sqrt(3)`
If (3x² + 2y²) : (3x² – 2y²) = 11 : 9, find the value of `(3x^4 + 5y^4)/(3x^4 - 5y^4)`
If `(x^2 - 4)/(x^2 + 4) = 3/5`, the value of x is ______.