Advertisements
Advertisements
Question
if x = `(sqrt(a + 1) + sqrt(a-1))/(sqrt(a + 1) - sqrt(a - 1))` using properties of proportion show that `x^2 - 2ax + 1 = 0`
Solution 1
Consider `x = (sqrt(a+1)+sqrt(a-1))/(sqrt(a + 1) - sqrt(a - 1)`
`=> x/1 = (sqrt(a + 1) + sqrt(a - 1))/(sqrt(a + 1) - sqrt(a - 1))`
By using componando and dividendo, we have
`=> (x + 1)/(x - 1) = ((sqrt(a + 1)+sqrt(a - 1)) + (sqrt(a + 1) - (sqrt(a - 1))))/((sqrt(a + 1) + sqrt(a - 1))-(sqrt(a + 1)-sqrt(a - 1))`
`=> (x + 1)/(x - 1) = (2sqrt(a + 1))/(2sqrt(a-1)) = sqrt(a + 1)/sqrt(a - 1)`
Squaring both sides we get
`=> (x + 1)^2/(x - 1)^2 = (sqrt(a + 1))^2/(sqrt(a - 1))^2`
`=> (x^2 + 2x + 1)/(x^2 - 2x + 1) = (a + 1)/(a - 1)`
Again using componando and dividendo, we get
`=> ((x^2 + 2x + 1)+(x^2 - 2x + 1))/((x^2 + 2x + 1)-(x^2 -2x + 1)) = ((a + 1)+(a - 1))/((a + 1)-(a - 1))`
`=> (2x^2 + 2)/(4x) = (2a)/2 => (x^2 + 1)/(2x) = a/1`
`=> x^2 + 1 = 2ax`
`=> x^2 - 2ax + 1 = 0`
Solution 2
`x = (sqrt(a+1)+sqrt(a-1))/(sqrt(a + 1) - sqrt(a - 1)`
⇒ ` x/1 = (sqrt(a + 1) + sqrt(a - 1))/(sqrt(a + 1) - sqrt(a - 1))`
By componendo and dividendo
`(x + 1)/(x - 1) = (sqrt(a + 1) + sqrt(a - 1) + sqrt(a + 1) - sqrt(a - 1))/(sqrt(a + 1) + sqrt(a - 1) - sqrt(a + 1) - sqrt(a - 1))`
⇒ `(x + 1)/(x - 1) = sqrt(a + 1)/sqrt(a - 1)`
⇒ `(x + 1)^2/(x - 1)^2 = sqrt(a + 1)/sqrt(a - 1)` ...(by duplicate ratio)
⇒ `(x^2 + 2x + 1)/(x^2 - 2x + 1) = (a + 1)/(a - 1)`
Again by componendo and dividendo
`=> (x^2 + 2x + 1+ x^2 - 2x + 1)/(x^2 + 2x + 1 - x^2 + 2x - 1)`
= `(a + 1 + a - 1)/(a + 1- a - 1)`
⇒ `(x^2 + 1)/(2x) = a/1`
⇒ `x^2 + 1 = 2ax`
⇒ `x^2 - 2ax + 1 = 0`
Hence proved.
APPEARS IN
RELATED QUESTIONS
if `(x^2 + y^2)/(x^2 - y^2) = 17/8`then find the value of :
1) x : y
2) `(x^3 + y^3)/(x^3 - y^3)`
Using componendo and dividendo, find the value of x
`(sqrt(3x + 4) + sqrt(3x -5))/(sqrt(3x + 4)-sqrt(3x - 5)) = 9`
Given, `a/b = c/d`, prove that: `(3a - 5b)/(3a + 5b) = (3c - 5d)/(3c + 5d)`
If (a + b + c + d) (a – b – c + d) = (a + b – c – d) (a – b + c – d), prove that a : b = c : d.
If 7x – 15y = 4x + y, find the value of x : y. Hence, use componendo and dividendo to find the values of:
`(9x + 5y)/(9x - 5y)`
If 7x – 15y = 4x + y, find the value of x : y. Hence, use componendo and dividend to find the values of:
`(3x^2 + 2y^2)/(3x^2 - 2y^2)`
If a : b = c : d , then prove that `("a"^2 + "ab" +
"b"^2)/("a"^2 - "ab" + "b"^2) = ("c"^2 + "cd"+ "d"^2)/("c"^2 - "cd" + "d"^2)`
If p, q, r ands are In continued proportion, then prove that (p3+q3+r3) ( q3+r3+s3) : : P : s
If `(5x + 7y)/(5u + 7v) = (5x - 7y)/(5u - 7v)`, show that `x/y = u/v`
If a : b = 2 : 1, the value of (7a + 4b) : (5a – 2b) is ______.