Advertisements
Advertisements
Question
If p, q, r ands are In continued proportion, then prove that (p3+q3+r3) ( q3+r3+s3) : : P : s
Solution
`"p"/"q" = "q"/"r" = "r"/"s" = "k"`
r = ks
q = kr = k2s
p = kq = k3s
LHS
`("p"^3 + "q"^3 + "r"^3)/("q"^3 + "r"^3 + "s"^3)`
`= ("k"^9"s"^3 + "k"^6 "s"^3 + "k"^3"s"^3)/("k"^6"s"^3 + "k"^3"s"^3 + "s"^3)`
`= ("s"^3"k"^3("k"^6 + "k"^3 + 1))/("s"^3("k"^6 + "k"^3"s"^3 + "s"^3))`
`= "k"^3`
RHS
`"p"/"s" = ("k"^3"s")/"s" = "k"^3`
LHS = RHS . Hence proved.
APPEARS IN
RELATED QUESTIONS
if x = `(sqrt(a + 1) + sqrt(a-1))/(sqrt(a + 1) - sqrt(a - 1))` using properties of proportion show that `x^2 - 2ax + 1 = 0`
If a : b = c : d, prove that: (9a + 13b)(9c – 13d) = (9c + 13d)(9a – 13b).
Given, `a/b = c/d`, prove that: `(3a - 5b)/(3a + 5b) = (3c - 5d)/(3c + 5d)`
If `x = (sqrt(m + n) + sqrt(m - n))/(sqrt(m + n) - sqrt(m - n))`, express n in terms of x and m.
If (4a + 9b)(4c – 9d) = (4a – 9b)(4c + 9d), prove that: a : b = c : d.
Given x = `(sqrt(a^2 + b^2) + sqrt(a^2 - b^2))/(sqrt(a^2 + b^2) + sqrt(a^2 - b^2))`
Use componendo and dividendo to prove that b^2 = (2a^2x)/(x^2 + 1)
Using componendo and dividendo, find the value of x:
`(sqrt(3x + 4) + sqrt(3x - 5))/(sqrt(3x + 4) - sqrt(3x - 5)) = 9`
If a : b : : c : d, prove that `(5a + 11b)/(5c + 11d) = (5a - 11b)/(5c - 11d)`
If (4a + 5b) (4c – 5d) = (4a – 5d) (4c + 5d), prove that a, b, c, d are in proporton.
Solve x : `(sqrt(36x + 1) + 6sqrt(x))/(sqrt(36x + 1) -6sqrt(x))` = 9