Advertisements
Advertisements
प्रश्न
If p, q, r ands are In continued proportion, then prove that (p3+q3+r3) ( q3+r3+s3) : : P : s
उत्तर
`"p"/"q" = "q"/"r" = "r"/"s" = "k"`
r = ks
q = kr = k2s
p = kq = k3s
LHS
`("p"^3 + "q"^3 + "r"^3)/("q"^3 + "r"^3 + "s"^3)`
`= ("k"^9"s"^3 + "k"^6 "s"^3 + "k"^3"s"^3)/("k"^6"s"^3 + "k"^3"s"^3 + "s"^3)`
`= ("s"^3"k"^3("k"^6 + "k"^3 + 1))/("s"^3("k"^6 + "k"^3"s"^3 + "s"^3))`
`= "k"^3`
RHS
`"p"/"s" = ("k"^3"s")/"s" = "k"^3`
LHS = RHS . Hence proved.
APPEARS IN
संबंधित प्रश्न
If a : b = c : d, prove that: (6a + 7b)(3c – 4d) = (6c + 7d)(3a – 4b).
If a : b : : c : d, then prove that
`(4"a" + 9"b")/(4"c" + 9"d") = (4"a" - 9"b")/(4"c" - 9"d")`
If a : b : : c : d, then prove that
(ax+ by): (cx + dy)=(ax - by) : (cx - dy)
If y = `(sqrt(a + 3b) + sqrt(a - 3b))/(sqrt(a + 3b) - sqrt(a - 3b))`, show that 3by2 - 2ay + 3b = 0.
Using componendo and idendo, find the value of x
`(sqrt(3x + 4) + sqrt(3x - 5))/(sqrt(3x + 4) - sqrt(3x - 5)` = 9
if `(3a + 4b)/(3c + 4d) = (3a - 4b)/(3c - 4d)` Prove that `a/b = c/d`.
Find x from the following equations : `(3x + sqrt(9x^2 - 5))/(3x - sqrt(9x^2 - 5)) = (5)/(1)`
If x = `(sqrt(a + 1) + sqrt(a - 1))/(sqrt(a + 1 - sqrt(a - 1)`, using properties of proportion, show that x2 – 2ax + 1 = 0
If x = `"pab"/(a + b)`, provee that `(x + pa)/(x - pa) - (x + pb)/(x - pb) = (2(a^2 - b^2))/(ab)`
Using Componendo and Dividendo solve for x:
`(sqrt(2x + 2) + sqrt(2x - 1))/(sqrt(2x + 2) - sqrt(2x - 1))` = 3