मराठी

If U, V, W, and X Are in Continued Proportion, Then Prove that (2u+3x) : (3u+4x) : : (2u3+3v3) : (3u3+4v3) - Mathematics

Advertisements
Advertisements

प्रश्न

If u, v, w, and x are in continued proportion, then prove that (2u+3x) : (3u+4x) : : (2u3+3v3) : (3u3+4v3

बेरीज

उत्तर

`"u"/"v" = "v"/"w" = "w"/"x" = "a"`

w = ax

v = aw = a2

u = av = a3

LHS

`(2"u" + 3"x")/(3"u" + 4"x")`

`= (2"a"^3"x" + 3"x")/(3"a"^3"x" + 4"x")`

`= (2"a"^3 + 3)/(3"a"^3 + 4)`

RHS 

`(2"u"^3 + 3"v"^3)/(3"u"^3 + 4"v"^3)`

`= (2"a"^9"x"^3 + 3"a"^6"x"^3)/(3"a"^9"x"^3 + 4"a"^6"x"^3)`

`= (2"a"^3 + 3)/(3"a"^3 + 4)`

LHS = RHS. Hence , proved.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: Ratio and Proportion - Exercise 9.3

APPEARS IN

फ्रँक Mathematics - Part 2 [English] Class 10 ICSE
पाठ 9 Ratio and Proportion
Exercise 9.3 | Q 8
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×