Advertisements
Advertisements
प्रश्न
If a : b = c : d, prove that: (6a + 7b)(3c – 4d) = (6c + 7d)(3a – 4b).
उत्तर
Given, `a/b = c/d`
`=> (6a)/(7b) = (6c)/(7d)` ...`("Multiplying each side by" 6/7)`
`=> (6a + 7b)/(7b) = (6c + 7d)/(7d)` ...(By componendo)
`=> (6a + 7b)/(6c + 7d) = (7b)/(7d) = b/d` ...(1)
Also, `a/b = c/d`
`=> (3a)/(4b) = (3c)/(4d)` ...`("Mutipling each side by" 3/4)`
`=> (3a - 4b)/(4b) = (3c - 4d)/(4d)` ...(By dividendo)
`=> (3a - 4b)/(3c - 4d) = (4b)/(4d) = b/d` ...(2)
From (1) and (2)
`(6a + 7b)/(6c + 7d) = (3a - 4b)/(3c - 4d)`
(6a + 7b)(3c – 4d) = (6c + 7d)(3a – 4b)
APPEARS IN
संबंधित प्रश्न
if x = `(sqrt(a + 1) + sqrt(a-1))/(sqrt(a + 1) - sqrt(a - 1))` using properties of proportion show that `x^2 - 2ax + 1 = 0`
If a : b = c : d, prove that: xa + yb : xc + yd = b : d.
If `(x^3 + 3xy^2)/(3x^2y + y^3) = (m^3 + 3mn^2)/(3m^2n + n^3)`, show that nx = my.
Using componendo and idendo, find the value of x
`(sqrt(3x + 4) + sqrt(3x - 5))/(sqrt(3x + 4) - sqrt(3x - 5)` = 9
Find the value of
`(x + sqrt(3))/(x - sqrt(3)) + (x + sqrt(2))/(x - sqrt(2)), if x = (2sqrt(6))/(sqrt(3) + sqrt(2)`.
If `p/q = r/s`, prove that `(2p + 3q)/(2p - 3q) = (2r + 3s)/(2r - 3s)`.
If x = `(8ab)/"a + b"` find the value of `(x + 4a)/(x - 4a) + (x + 4b)/(x - 4b)`
Using the properties of proportion, solve the following equation for x; given `(x^3 + 3x)/(3x^2 + 1) = (341)/(91)`
If (m + n) : (n – m) = 5 : 2 ; m : n is ______.
If x = y, the value of (3x + y) : (5x – 3y) is ______.