Advertisements
Advertisements
प्रश्न
Using Componendo and Dividendo solve for x:
`(sqrt(2x + 2) + sqrt(2x - 1))/(sqrt(2x + 2) - sqrt(2x - 1))` = 3
उत्तर
`(sqrt(2x + 2) + sqrt(2x - 1))/(sqrt(2x + 2) - sqrt(2x - 1)) = 3/1`
Using componendo and dividendo,
`((sqrt(2x + 2) + sqrt(2x - 1)) + (sqrt(2x + 2) - sqrt(2x - 1)))/((sqrt(2x + 2) + sqrt(2x - 1)) - (sqrt(2x + 2) - sqrt(2x - 1))) = (3 + 1)/(3 - 1)`
`(2sqrt(2x + 2))/(2sqrt(2x - 1)) = 4/2`
`sqrt(2x + 2)/(sqrt(2x - 1)` = 2
On squaring
`(2x + 2)/(2x - 1)` = 4
2x + 2 = 8x – 4
2x – 8x = – 2 – 4
– 6x = – 6
x = 1
APPEARS IN
संबंधित प्रश्न
If 7x – 15y = 4x + y, find the value of x : y. Hence, use componendo and dividendo to find the values of:
`(9x + 5y)/(9x - 5y)`
If a : b = c : d , then prove that `("a"^2 + "ab" +
"b"^2)/("a"^2 - "ab" + "b"^2) = ("c"^2 + "cd"+ "d"^2)/("c"^2 - "cd" + "d"^2)`
If `(8a - 5b)/(8c - 5d) = (8a + 5b)/(8c + 5d), "prove that" a/b = c/d.`
Show, that a, b, c, d are in proportion if:
(6a + 7b) : (6c + 7d) : : (6a - 7b) : (6c - 7d)
Given that `(a^3 + 3ab^2)/(b^2 + 3a^2b) = (63)/(62)`.
Using Componendo and Dividendo find a : b.
If `(3x + 5y)/(3x - 5y) = (7)/(3)`, find x : y.
If `a/b = c/d,` show that (9a + 13b) (9c - 13d) = (9c + 13b) (9a - 13d).
If a : b : : c : d, prove that `(5a + 11b)/(5c + 11d) = (5a - 11b)/(5c - 11d)`
If `(8a - 5b)/(8c - 5a) = (8a + 5b)/(8c + 5d)`, prove that `a/b = c/d`
If x = `(root(3)(a + 1) + root(3)(a - 1))/(root(3)(a + 1) - root(3)(a - 1)`,prove that :
x³ – 3ax² + 3x – a = 0