Advertisements
Advertisements
प्रश्न
If a : b = c : d , then prove that `("a"^2 + "ab" +
"b"^2)/("a"^2 - "ab" + "b"^2) = ("c"^2 + "cd"+ "d"^2)/("c"^2 - "cd" + "d"^2)`
उत्तर
`"a"/"b" = "c"/"d" => "a" = "bc"/"d"`
LHS
`("a"^2 + "ab" + "b"^2)/("a"^2 - "ab" + "b"^2)`
`= (("bc"/"d")^2 + ("bc"/"d")"b" + "b"^2)/(("bc"/"d")^2 - ("bc"/"d")"b" + "b"^2)`
`= ("b"^2"c"^2 + "b"^2"cd" + "d"^2"b"^2)/("b"^2"c"^2 - "b"^2 "cd" + "d"^2"b"^2)`
`= ("b"^2("c"^2 + "cd" + "d"))/("b"^2("c"^2 - "cd" + "d"^2)) = ("c"^2 + "cd" + "d"^2)/("c"^2 - "cd" + "d"^2)` = RHS
LHS = RHS
Hence , proved.
APPEARS IN
संबंधित प्रश्न
If `x = (2ab)/(a + b)`, find the value of `(x + a)/(x - a) + (x +b)/(x - b)`.
If `x = (sqrt(a + 1) + sqrt(a - 1))/(sqrt(a + 1) - sqrt(a - 1))`, using properties of proportion show that: x2 – 2ax + 1 = 0.
If (7m +8n)(7p - 8q) = (7m - 8n)(7p + 8q), then prove that m: n = p: q
If a : b =c : d, then prove that `("a"^2 + "c"^2)/("b"^2 + "d"^2) = ("ac")/("bc")`
If `p/q = r/s`, prove that `(2p + 3q)/(2p - 3q) = (2r + 3s)/(2r - 3s)`.
If a : b : : c : d, prove that `(5a + 11b)/(5c + 11d) = (5a - 11b)/(5c - 11d)`
If (4a + 5b) (4c – 5d) = (4a – 5d) (4c + 5d), prove that a, b, c, d are in proporton.
Find x from the following equations : `(sqrt(x + 4) + sqrt(x - 10))/(sqrt(x + 4) - sqrt(x - 10)) = (5)/(2)`
Given that `(a^3 + 3ab^2)/(b^3 + 3a^2b) = (63)/(62)`. Using componendo and dividendo find a: b.
If x = `(2mab)/(a + b)`, find the value of `(x + ma)/(x - ma) + (x + mb)/(x - mb)`