Advertisements
Advertisements
प्रश्न
If `a/b = c/d,` show that (9a + 13b) (9c - 13d) = (9c + 13b) (9a - 13d).
उत्तर
We have `a/b = c/d`
`[ "Multiplying both sides by" 9/13]`
`(9a)/(13b) = (9c)/(13d)`
[By componendo and dividendo]
`(9a + 13b)/(9a - 13b) = (9c + 13d)/(9c - 13d)`
(By cross multiplication)
(9a + 13b) (9c - 13d) = (9a - 13b) (9c + 13d).
Hence proved.
APPEARS IN
संबंधित प्रश्न
Using the properties of proportion solve for x given `(x^4 + 1)/(2x^2) = 17/8`
If 7x – 15y = 4x + y, find the value of x : y. Hence, use componendo and dividend to find the values of:
`(3x^2 + 2y^2)/(3x^2 - 2y^2)`
If `(x^2 + y^2)/(x^2 - y^2) = 2 1/8`, find: `x/y`
If a : b :: c : d :: e : f, then prove that `("ae" + "bf")/("ae" - "bf")` = `("ce" + "df")/("ce" - "df")`
If y = `(sqrt(a + 3b) + sqrt(a - 3b))/(sqrt(a + 3b) - sqrt(a - 3b))`, show that 3by2 - 2ay + 3b = 0.
If x = `(2a + b)/(a + b)` find the value of `(x + a)/(x - a) + (x + b)/(x - b)`
Solve x : `(sqrt(36x + 1) + 6sqrt(x))/(sqrt(36x + 1) -6sqrt(x))` = 9
If `(x + y)/(ax + by) = (y + z)/(ay + bz) = (z + x)/(az + bx)`, prove that each of these ratio is equal to `(2)/(a + b)` unless x + y + z = 0
If x = `"pab"/(a + b)`, provee that `(x + pa)/(x - pa) - (x + pb)/(x - pb) = (2(a^2 - b^2))/(ab)`
Find x from the equation `(a+ x + sqrt(a^2 x^2))/(a + x - sqrt(a^2 - x^2)) = b/x`