Advertisements
Advertisements
प्रश्न
Solve x : `(sqrt(36x + 1) + 6sqrt(x))/(sqrt(36x + 1) -6sqrt(x))` = 9
उत्तर
`(sqrt(36x + 1) + 6sqrt(x))/(sqrt(36x + 1) -6sqrt(x)) = (9)/(1)`
Applying componendo and dividendo,
`(sqrt(36x + 1) + 6sqrt(x) + sqrt(36x + 1) - 6sqrt(x))/(sqrt(36x + 1) + 6sqrt(x) - sqrt(36x - 1) + 6sqrt(x)`
= `(9 + 1)/(9 - 1)`
⇒ `(2sqrt(36x + 1))/(12sqrt(x)) = (10)/(8)`
⇒ `sqrt(36x + 1)/(6sqrt(x)) = (5)/(4)` ...(Squaring both sides)
`(36x + 1)/(36x) = (25)/(16)`
⇒ 36x x 25 = 16(36x + 1)
⇒ 900x = 576x + 16
⇒ 900x - 576x = 16
⇒ 324 = 16
∴ x = `(16)/(324)`
= `(4)/(81)`.
APPEARS IN
संबंधित प्रश्न
Given `(x^3 + 12x)/(6x^2 + 8) = (y^3+ 27y)/(9y^2 + 27)`. Using componendo and dividendo find x : y.
Using componendo and dividendo, find the value of x
`(sqrt(3x + 4) + sqrt(3x -5))/(sqrt(3x + 4)-sqrt(3x - 5)) = 9`
Given x = `(sqrt(a^2 + b^2) + sqrt(a^2 - b^2))/(sqrt(a^2 + b^2) - sqrt(a^2 - b^2))`
Use componendo and dividendo to prove that `b^2 = (2a^2x)/(x^3 + 1)`
If a : b = c : d, prove that: (9a + 13b)(9c – 13d) = (9c + 13d)(9a – 13b).
If (7m +8n)(7p - 8q) = (7m - 8n)(7p + 8q), then prove that m: n = p: q
Using componendo and idendo, find the value of x
`(sqrt(3x + 4) + sqrt(3x - 5))/(sqrt(3x + 4) - sqrt(3x - 5)` = 9
If a : b : : c : d, prove that `(2a +5b)/(2a - 5b) = (2c + 5d)/(2c - 5d)`
If a : b : : c : d, prove that (2a + 3b)(2c – 3d) = (2a – 3b)(2c + 3d)
If x = `(8ab)/"a + b"` find the value of `(x + 4a)/(x - 4a) + (x + 4b)/(x - 4b)`
If x = `(sqrt(a + 1) + sqrt(a - 1))/(sqrt(a + 1 - sqrt(a - 1)`, using properties of proportion, show that x2 – 2ax + 1 = 0