Advertisements
Advertisements
प्रश्न
If p, q, r ands are In continued proportion, then prove that (p3+q3+r3) ( q3+r3+s3) : : P : s
उत्तर
`"p"/"q" = "q"/"r" = "r"/"s" = "k"`
r = ks
q = kr = k2s
p = kq = k3s
LHS
`("p"^3 + "q"^3 + "r"^3)/("q"^3 + "r"^3 + "s"^3)`
`= ("k"^9"s"^3 + "k"^6 "s"^3 + "k"^3"s"^3)/("k"^6"s"^3 + "k"^3"s"^3 + "s"^3)`
`= ("s"^3"k"^3("k"^6 + "k"^3 + 1))/("s"^3("k"^6 + "k"^3"s"^3 + "s"^3))`
`= "k"^3`
RHS
`"p"/"s" = ("k"^3"s")/"s" = "k"^3`
LHS = RHS . Hence proved.
APPEARS IN
संबंधित प्रश्न
If (7a + 8b)(7c – 8d) = (7a – 8b)(7c + 8d); prove that a : b = c : d.
If a : b =c : d, then prove that `("a"^2 + "c"^2)/("b"^2 + "d"^2) = ("ac")/("bc")`
Given that `(a^3 + 3ab^2)/(b^2 + 3a^2b) = (63)/(62)`.
Using Componendo and Dividendo find a : b.
If `p/q = r/s`, prove that `(2p + 3q)/(2p - 3q) = (2r + 3s)/(2r - 3s)`.
If `(8a - 5b)/(8c - 5a) = (8a + 5b)/(8c + 5d)`, prove that `a/b = c/d`
If (a + 3b + 2c + 6d) (a – 3b – 2c + 6d) = (a + 3b – 2c – 6d) (a – 3b + 2c – 6d), prove that a : b :: c : d.
Find x from the following equations : `(sqrt(12x + 1) + sqrt(2x - 3))/(sqrt(12x + 1) - sqrt(2x - 3)) = (3)/(2)`
Find x from the following equations : `(sqrt(a + x) + sqrt(a - x))/(sqrt(a + x) - sqrt(a - x)) = c/d`
If x = `(sqrt(a + 1) + sqrt(a - 1))/(sqrt(a + 1 - sqrt(a - 1)`, using properties of proportion, show that x2 – 2ax + 1 = 0
If (a + b) : (a – b) = 13 : 3 ; a : b is ______.