Advertisements
Advertisements
प्रश्न
If a : b : : c : d, then prove that
7a+11b : 7a -11b = 7c +11d : 7c - 11d
उत्तर
7a+11b: 7a -11b = 7c+11d : 7c -11d
`"a"/"b" = "c"/"d"`
Multiplying both sides by `7/11`
`=> "a"/"b" xx 7/11 = "c"/"d" xx 7/11`
`=> (7"a")/(11"b") = (7"c")/(11"d")`
Applying componendo and dividendo,
`(7"a" + 11"b")/(7"a" - 11"b") = (7"c" + 11"d")/(7"c" - 11"d")`
Hence, 7a+11b : 7a -11b = 7c +11d : 7c - 11d
APPEARS IN
संबंधित प्रश्न
If a : b = c : d, prove that: 5a + 7b : 5a – 7b = 5c + 7d : 5c – 7d.
Given x = `(sqrt(a^2 + b^2) + sqrt(a^2 - b^2))/(sqrt(a^2 + b^2) + sqrt(a^2 - b^2))`
Use componendo and dividendo to prove that b^2 = (2a^2x)/(x^2 + 1)
If `(x^2 + y^2)/(x^2 - y^2) = 2 1/8`, find: `(x^3 + y^3)/(x^3 - y^3)`
Given : x = `(sqrt(a^2 + b^2)+sqrt(a^2 - b^2))/(sqrt(a^2 + b^2)-sqrt(a^2 - b^2))`
Use componendo and dividendo to prove that `b^2 = (2a^2x)/(x^2 + 1)`.
If `a/b = c/d,` show that (9a + 13b) (9c - 13d) = (9c + 13b) (9a - 13d).
If a : b : : c : d, prove that `(2a +5b)/(2a - 5b) = (2c + 5d)/(2c - 5d)`
If a : b : : c : d, prove that `(5a + 11b)/(5c + 11d) = (5a - 11b)/(5c - 11d)`
If a : b : : c : d, prove that (2a + 3b)(2c – 3d) = (2a – 3b)(2c + 3d)
Given that `(a^3 + 3ab^2)/(b^3 + 3a^2b) = (63)/(62)`. Using componendo and dividendo find a: b.
If (3x² + 2y²) : (3x² – 2y²) = 11 : 9, find the value of `(3x^4 + 5y^4)/(3x^4 - 5y^4)`