Advertisements
Advertisements
प्रश्न
If a : b : : c : d, then prove that
7a+11b : 7a -11b = 7c +11d : 7c - 11d
उत्तर
7a+11b: 7a -11b = 7c+11d : 7c -11d
`"a"/"b" = "c"/"d"`
Multiplying both sides by `7/11`
`=> "a"/"b" xx 7/11 = "c"/"d" xx 7/11`
`=> (7"a")/(11"b") = (7"c")/(11"d")`
Applying componendo and dividendo,
`(7"a" + 11"b")/(7"a" - 11"b") = (7"c" + 11"d")/(7"c" - 11"d")`
Hence, 7a+11b : 7a -11b = 7c +11d : 7c - 11d
APPEARS IN
संबंधित प्रश्न
Given, `a/b = c/d`, prove that: `(3a - 5b)/(3a + 5b) = (3c - 5d)/(3c + 5d)`
If (7a + 8b)(7c – 8d) = (7a – 8b)(7c + 8d); prove that a : b = c : d.
If `x = (6ab)/(a + b)`, find the value of `(x + 3a)/(x - 3a) + (x + 3b)/(x - 3b)`.
If `(3x + 4y)/(3u + 4v) = (3x - 4y)/(3u - 4v)`, then show that `x/y = u/v`.
If `(5x + 7y)/(5u + 7v) = (5x - 7y)/(5u - 7v)`, show that `x/y = u/v`
If x = `(2a + b)/(a + b)` find the value of `(x + a)/(x - a) + (x + b)/(x - b)`
Find x from the following equations : `(sqrt(2 - x) + sqrt(2 + x))/(sqrt(2 - x) - sqrt(2 + x)` = 3
Find x from the following equations : `(sqrt(12x + 1) + sqrt(2x - 3))/(sqrt(12x + 1) - sqrt(2x - 3)) = (3)/(2)`
Find x from the following equations : `(sqrt(a + x) + sqrt(a - x))/(sqrt(a + x) - sqrt(a - x)) = c/d`
Give `(x^3 + 12x)/(6x^2 + 8) = (y^3 + 27y)/(9y^2 + 27)` Using componendo and dividendo find x : y.