Advertisements
Advertisements
प्रश्न
If `x = (6ab)/(a + b)`, find the value of `(x + 3a)/(x - 3a) + (x + 3b)/(x - 3b)`.
उत्तर
`x = (6ab)/(a + b)`
`=> x/(3a) = (2b)/(a + b)`
Aplying compinendo and dividend,
`(x + 3a)/(x - 3a) = (2b + a + b)/(2b - a - b)`
`(x + 3a)/(x - 3a) = (3b + a)/(b - a)` ...(1)
Again, `x = (6ab)/(a + b)`
`=> x/(3b) = (2a)/(a + b)`
Applying componendo and dividendo,
`(x + 3b)/(x - 3b) = (2a + a + b)/(2a - a - b)`
`(x + 3b)/(x - 3b) = (3a + b)/(a - b)` ...(2)
From (1) and (2)
`(x + 3a)/(x - 3a) + (x + 3b)/(x - 3b) = (3b + a)/(b -a) + (3a + b)/(a - b)`
`(x + 3a)/(x - 3a) + (x + 3b)/(x - 3b) = (-3b -a + 3a + b)/(a - b)`
`(x + 3a)/(x - 3a) + (x + 3b)/(x - 3b) = (2a - 2b)/(a - b) = 2`
APPEARS IN
संबंधित प्रश्न
Using componendo and dividendo, find the value of x
`(sqrt(3x + 4) + sqrt(3x -5))/(sqrt(3x + 4)-sqrt(3x - 5)) = 9`
If 7x – 15y = 4x + y, find the value of x : y. Hence, use componendo and dividend to find the values of:
`(3x^2 + 2y^2)/(3x^2 - 2y^2)`
If a : b : : c : d, then prove that
(ax+ by): (cx + dy)=(ax - by) : (cx - dy)
If a : b = c : d , then prove that `("a"^2 + "ab" +
"b"^2)/("a"^2 - "ab" + "b"^2) = ("c"^2 + "cd"+ "d"^2)/("c"^2 - "cd" + "d"^2)`
If y = `(sqrt(a + 3b) + sqrt(a - 3b))/(sqrt(a + 3b) - sqrt(a - 3b))`, show that 3by2 - 2ay + 3b = 0.
If (a + 3b + 2c + 6d) (a – 3b – 2c + 6d) = (a + 3b – 2c – 6d) (a – 3b + 2c – 6d), prove that a : b :: c : d.
If x = `(2a + b)/(a + b)` find the value of `(x + a)/(x - a) + (x + b)/(x - b)`
Find x from the following equations : `(sqrt(x + 4) + sqrt(x - 10))/(sqrt(x + 4) - sqrt(x - 10)) = (5)/(2)`
Given `x = (sqrt(a^2 + b^2) + sqrt(a^2 - b^2))/(sqrt(a^2 + b^2) - sqrt(a^2 - b^2)`. Use componendo and dividendo to prove that: `b^2 = (2a^2x)/(x^2 + 1)`
If x = `(2mab)/(a + b)`, find the value of `(x + ma)/(x - ma) + (x + mb)/(x - mb)`