Advertisements
Advertisements
प्रश्न
Give `(x^3 + 12x)/(6x^2 + 8) = (y^3 + 27y)/(9y^2 + 27)` Using componendo and dividendo find x : y.
उत्तर
Give `(x^3 + 12x)/(6x^2 + 8) = (y^3 + 27y)/(9y^2 + 27)`
Using componendo-dividendo, we have
`(x^3 + 12x + 6x^2 + 8)/(x^3 + 12x - 6x^2 - 8) = (y^3 + 27y + 9y^2 + 27)/(y^3 + 27y 9y^2 - 27)`
⇒ `(x + 2)^3/(x 2)^3 = (y + 3)^3/(9y - 3)^3`
⇒ `((x + 2)/(x - 2))^3 = ((y + 3)/(y - 3))^3`
⇒ `(x + 2)/(x - 2) = (y + 3)/(y - 3)`
Again using componendo-dividendo, we get
`(x + 2 + x - 2)/(x + 2 - x + 2) = (y + 3 + y - 3)/(y + 3 - y + 3)`
⇒ `(2x)/(4) = (2y)/(3)`
⇒ `x/(2) = y/(3)`
⇒ `x/y = (2)/(3)`
Thus the required ratio is x : y = 2 : 3.
APPEARS IN
संबंधित प्रश्न
if x = `(sqrt(a + 1) + sqrt(a-1))/(sqrt(a + 1) - sqrt(a - 1))` using properties of proportion show that `x^2 - 2ax + 1 = 0`
If a : b = c : d, prove that: 5a + 7b : 5a – 7b = 5c + 7d : 5c – 7d.
If a : b = c : d, prove that: (6a + 7b)(3c – 4d) = (6c + 7d)(3a – 4b).
Given, `a/b = c/d`, prove that: `(3a - 5b)/(3a + 5b) = (3c - 5d)/(3c + 5d)`
If `x = (6ab)/(a + b)`, find the value of `(x + 3a)/(x - 3a) + (x + 3b)/(x - 3b)`.
If `x = (sqrt(m + n) + sqrt(m - n))/(sqrt(m + n) - sqrt(m - n))`, express n in terms of x and m.
If a : b : : c : d, prove that `(5a + 11b)/(5c + 11d) = (5a - 11b)/(5c - 11d)`
Given `x = (sqrt(a^2 + b^2) + sqrt(a^2 - b^2))/(sqrt(a^2 + b^2) - sqrt(a^2 - b^2)`. Use componendo and dividendo to prove that: `b^2 = (2a^2x)/(x^2 + 1)`
Given that `(a^3 + 3ab^2)/(b^3 + 3a^2b) = (63)/(62)`. Using componendo and dividendo find a: b.
If `(x + y)/(ax + by) = (y + z)/(ay + bz) = (z + x)/(az + bx)`, prove that each of these ratio is equal to `(2)/(a + b)` unless x + y + z = 0