Advertisements
Advertisements
प्रश्न
If `(by + cz)/(b^2 + c^2) = (cz + ax)/(c^2 + a^2) = (ax + by)/(a^2 + b^2)`, prove that each of these ratio is equal to `x/a = y/b = z/c`
उत्तर
`(by + cz)/(b^2 + c^2) = (cz + ax)/(c^2 + a^2) = (ax + by)/(a^2 + b^2)`
= `(2(ax + by + cz))/(2(a^2 + b^2 + c^2)`
= `(ax + by + cz)/(a^2 + b^2 + c^2)` ...(Adding)
Now `(by + cz)/(b^2+ c^2) = (ax + by + cz)/(a^2 + b^2 + c^2)`
⇒ `(by + cz)/(ax + by + cz) = (b^2 + c^2)/(a^2 + b^2 + c^2)` ...(By alternendo)
⇒ `(by+ cz - ax- by- cz)/(ax + by + cz)`
= `(b^2 + c^2 - a^2 - b^2 - c^2)/(a^2 + b^2 + c^2)`
⇒ `(-ax)/(ax + by + cz) = (-a)/(a^2 + b^2 + c^2)`
⇒ `x/(ax + by + cz) = a/(a^2 + b^2 + c^2)`
⇒ `x/a = (ax + by + cz)/(a^2 + b^2 + c^2)` ...(i)
Similarly we can prove that
`y/b = "ax + by + cz"/(a^2 + b^2 + c^2)` ...(ii)
and `z/c = "ax + by + cz"/(a^2 + b^2 + c^2)` ...(iii)
from (i), (ii) and (iii)
Hence `x/a = y/b = z/c`.
APPEARS IN
संबंधित प्रश्न
if `(x^2 + y^2)/(x^2 - y^2) = 17/8`then find the value of :
1) x : y
2) `(x^3 + y^3)/(x^3 - y^3)`
If a : b = c : d, prove that: (9a + 13b)(9c – 13d) = (9c + 13d)(9a – 13b).
If `a = (4sqrt6)/(sqrt2 + sqrt3)`, find the value of `(a + 2sqrt2)/(a - 2sqrt2) + (a + 2sqrt3)/(a - 2sqrt3)`.
If a : b :: c : d :: e : f, then prove that `("ae" + "bf")/("ae" - "bf")` = `("ce" + "df")/("ce" - "df")`
If `(8a - 5b)/(8c - 5d) = (8a + 5b)/(8c + 5d), "prove that" a/b = c/d.`
Show, that a, b, c, d are in proportion if:
(6a + 7b) : (6c + 7d) : : (6a - 7b) : (6c - 7d)
If `(8a - 5b)/(8c - 5a) = (8a + 5b)/(8c + 5d)`, prove that `a/b = c/d`
If x = `(sqrt(a + 1) + sqrt(a - 1))/(sqrt(a + 1 - sqrt(a - 1)`, using properties of proportion, show that x2 – 2ax + 1 = 0
If x = `(root(3)(a + 1) + root(3)(a - 1))/(root(3)(a + 1) - root(3)(a - 1)`,prove that :
x³ – 3ax² + 3x – a = 0
If `x/(a + b - c) = y/(b + c - a) = z/(c + a - b) = 5` and a + b + c = 7; the value of x + y + z is ______.