Advertisements
Advertisements
प्रश्न
If (a + b + c + d) (a – b – c + d) = (a + b – c – d) (a – b + c – d), prove that a : b = c : d.
Show, that a, b, c, d are in proportion if: (a + b + c + d) (a – b – c + d) = (a + b – c – d) (a – b + c – d)
उत्तर १
Given, `(a + b + c + d)/(a + b - c - d) = (a - b + c - d)/(a - b - c + d)`
Applying componendo and dividendo,
`((a + b + c + d) + (a + b - c - d))/((a + b + c + d) - (a + b - c - d)) = ((a - b + c - d) + (a - b - c + d))/((a - b + c - d) - (a - b - c + d))`
`(2(a + b))/(2(c + d)) = (2(a - b))/(2(c - d))`
`(a + b)/(c + d) = (a - b)/(c -d)`
`(a + b)/(a - b) = (c + d)/(c - d)`
Applying componendo and dividendo,
`(a + b + a - b)/(a + b - a - b) = (c + d + c - d)/(c + d - c + d )`
`(2a)/(2b) = (2c)/(2d)`
`a/b = c/d`
उत्तर २
We have `a/b = c/d`
Applying componendo and dividendo
⇒ `(a + b)/(a - b) = (c + d)/(c - d)`
Applying alternendo
⇒ `(a + b)/(c + d) = (a - b)/(c - d)`
Again, applying componendo and dividendo
`(a + b + c + d)/(a + b - c - d) = (a - b + c - d)/(a - b - c + d)`
⇒ (a + b + c + d) (a – b – c + d)
= (a + b – c – d) (a – b + c – d).
Hence proved.
संबंधित प्रश्न
If a : b = c : d, prove that: 5a + 7b : 5a – 7b = 5c + 7d : 5c – 7d.
If (7a + 8b)(7c – 8d) = (7a – 8b)(7c + 8d); prove that a : b = c : d.
Using the properties of proportion solve for x given `(x^4 + 1)/(2x^2) = 17/8`
If `(x^2 + y^2)/(x^2 - y^2) = 2 1/8`, find: `x/y`
If `(7"a" + 12"b")/(7"c" + 12"d")` then prove that `"a"/"b"="c"/"d"`
If y = `((p + 1)^(1/3) + (p - 1)^(1/3))/((p + 1)^(1/3) - (p - 1)^(1/3)` find that y3 - 3py2 + 3y - p = 0.
If (a + 3b + 2c + 6d) (a – 3b – 2c + 6d) = (a + 3b – 2c – 6d) (a – 3b + 2c – 6d), prove that a : b :: c : d.
If x = `(4sqrt(6))/(sqrt(2) + sqrt(3)` find the value of `(x + 2sqrt(2))/(x - 2sqrt(2)) + (x + 2sqrt(3))/(x - 2sqrt(3)`
Find x from the following equations : `(sqrt(1 + x) + sqrt(1 - x))/(sqrt(1 + x) - sqrt(1 - x)) = a/b`
Find x from the equation `(a+ x + sqrt(a^2 x^2))/(a + x - sqrt(a^2 - x^2)) = b/x`